Plant-based strategies aimed at expressing a functional human adenosine deaminase at high levels

S. A. D. Sanjeewa Singhabahu

A thesis submitted in partial fulfilment of the requirements of the University of East London for the degree of Doctor of Philosophy

June 2012
Abstract

An inherited disorder, ADA deficiency is a form of severe combined immunodeficiency, which is ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The absence of ADA-activity in sufferers eventually results in a dysfunctional immune system due to the build-up of toxic metabolites. To date, this has been treated with mixed success, using PEG-ADA, made from purified bovine ADA coupled to polyethylene glycol. It is likely however, that an enzyme replacement therapy protocol based on recombinant human ADA would be a more effective treatment for this disease. Therefore, as a preliminary step to produce biologically active human ADA in transgenic tobacco plants and tobacco BY-2 cell suspensions a human ADA cDNA has been inserted into a plant expression vector under the control of the CaMV 35S promoter and terminator. In an attempt to maximise the yield various recombined gene constructs containing apoplast targeting sequences were tested along with different translational regulatory sequences such as TMV omega and RUBISCO untranslated regions.

Tobacco plants and BY-2 cells transformed with cytosolic constructs showed levels of recombinant ADA of up to 80 ng mg$^{-1}$ TSP. By comparison, transgenic calli expressing constructs containing apoplast-directing signals showed higher levels of recombinant ADA expression of up to 115 ng mg$^{-1}$ TSP. The most significant ADA activities were measured in transgenic BY-2 cell suspensions, however. Where, incorporation of a signal for arabinogalactan addition at the C-terminus of the recombinant ADA gene, targeted for secretion, produced a maximum yield of approximately 13 mg L$^{-1}$. Representing a 336-fold increase over ADA activities recorded in a BY-2 suspension transformed with a cytosolic counterpart.

Disclaimer

I hereby declare that the work and results presented in this thesis are of my own investigations except where reference has been made to published literature.

S.A.D.Sanjeewa Singhabahu
Acknowledgements

I would like to express my sincere gratitude to Dr David Bringloe for his utmost support and advice throughout the course of my PhD. Further, I’m extremely grateful to Dr John George and Dr Joanne Tocher for all their support, advice and encouragement. I’m extremely honoured to be supervised by such an exceptional supervisory team. Thanks also to the academic, technical and support staff at the University of East London. I’m also extremely grateful to the School of health, sports and biosciences for granting the required funding and giving me the opportunity to successfully complete the PhD.

Special thanks to my loving parents Mr. Amarasiri and Mrs. Sriyani for the support and pride throughout my life in felicity and anguish. Very special thanks to my wife Deepthi for standing by my side and supporting me.
Table of contents

List of figures ... IX
List of tables ... XII
Abbreviations ... XIV

1. Introduction .. 2
1.1 Adenosine deaminase and ADA deficiency 2
1.2 Management options for ADA-SCID 6
1.3 ADA and cancer treatment ... 8
1.4 Production of biopharmaceuticals in transgenic plants and cell cultures 8
1.5 Expression of recombinant genes in plant cells and tissues ... 12
1.6 Suspension cultures .. 18
1.7 Plant produced human enzymes for enzyme replacement therapy 20
1.8 Production systems for ADA .. 22
1.9 Aims of study .. 23

2. Materials and Methods ... 24

2.1 Materials ... 25
2.1.1 Bacterial strains and plasmids 25
2.1.2 Plant material ... 28
2.1.3 Sources of reagents and enzymes 29
2.1.4 Solutions and media not described in the text 29

2.2 General DNA techniques .. 32
2.2.1 Small-scale isolation of plasmid DNA (minipreps) 32
2.2.2 Small-scale isolation of plasmid DNA (minipreps) using Qiagen QIAprep Kit 33
2.2.3 Large-scale isolation of plasmid DNA using QIAGEN Maxi Kit 33
2.2.4 Isolation of total DNA from plant material 34
2.2.5 Isolation of total DNA from plant material using Qiagen DNeasy Plant Mini Kit 34
2.2.6 Digestion of plasmid and PCR amplified DNA with restriction endonucleases 35
2.2.7 Agarose Gel electrophoresis of DNA 35
2.2.8 Recovery of DNA from agarose gels using Qiagen QIAquick Gel Extraction Kit 35
2.2.9 Ligation of DNA restriction fragments with vector DNA 36
2.2.10 Transformation of *E. coli* with plasmids 36
2.2.11 Amplification of DNA 37

2.2.12 DNA hybridization techniques 37

2.2.12.1 Preparation of Southern blots 37
2.2.12.2 Blotting 38
2.2.12.3 Random primer labelling of DNA with DIG 39
2.2.12.4 Hybridization of membrane-bound nucleic acid with DNA probes and immunological detection using Roche DIG High Prime Detection Kit 40

2.3 RNA methods 41

2.3.1 Isolation of total RNA using a Sigma Plant total RNA Kit 41
2.3.2 Gel electrophoresis of RNA 42
2.3.3 Preparation and hybridization of northern blots 42
2.3.4 Blot analysis 43

2.4 Tobacco plant and tobacco BY-2 cell transformation 43

2.4.1 Transfer of a pGreenI0029 plasmid constructs to *Agrobacterium* by electroporation 43
2.4.2 Transformation of tobacco BY-2 cell suspensions 44
2.4.3 Transformation of tobacco and regeneration of whole plants 45

2.5 Protein methods 46
2.5.1 Isolation of total soluble proteins from plant material 46
2.5.2 Enzymatic assay for adenosine deaminase 46
2.5.3 Protein Assay 48
2.5.4 SDS-polyacrylamide gel electrophoresis of proteins 49
2.5.5 Western blotting 50
2.5.6 Thrombin cleavage of ADA-hydroxyproline fusion 51

2.6 Statistical analysis 51

3. Design and generation of ADA gene expression constructs
 in pGREEN for tobacco transformation 52
3.1 Overview 53
3.2 Constructs designed to increase cytosolic levels of human ADA 57
 3.2.1 Human ADA cDNA (pCDNA_ADA) construct design 57
 3.2.2 Minimal 5’ UTR (pΔ 5’ UTR_ADA) construct design 62
 3.2.3 TMV Omega 5’ UTR (p5’ Omega_ADA) construct design 64
 3.2.4 TMV Omega 5’& 3’ UTR (p5’_3’ Omega_ADA) construct design 66
 3.2.5 RUBISCO small subunit 5’ UTR (pSS 5’UTR_ADA) construct design 67
3.3 Constructs designed to increase levels of human ADA in tobacco
 by directing recombinant protein to apoplast and ER 69
 3.3.1 TMV Omega 5’UTR PR1a and TMV Omega 5’UTR Extensin
 (p5’Omega-PR1a_ADA and p5’Omega-Extensin_ADA) construct design 69
 3.3.2 3’Hydroxyproline (p5’Omega-Extensin_ADA-3’Hydroxyproline) construct design 73

4. Cytosolic expression of human adenosine deaminase in transgenic tobacco
 plants and BY-2 calli 77
4.1 Overview

4.2 Results

4.2.1 Cytosolic expression in transformed plants

4.2.1.1 Detection of adenosine deaminase protein in transgenic tobacco plants using western blot analysis

4.2.1.2 Southern blot analysis of genomic DNA from plants transformed with the pCDNA_ADA construct

4.2.1.3 Northern blot analysis of ADA mRNA from plants transformed with the pCDNA_ADA construct

4.2.2 Expression of five ADA cytosolic constructs in tobacco BY-2 calli

4.2.2.1 Northern blot analysis of transcribed ADA mRNA from tobacco BY-2 calli transformed with five cytosolic constructs

4.3 Discussion

5. Subcellular directed expression of human adenosine deaminase in transgenic tobacco BY-2 calli

5.1 Overview

5.2 Results

5.2.1 Apoplast-directed expression in transformed BY-2 calli

5.2.2 Northern blot analysis of transcribed mRNA from calli transformed with different apoplast-directed constructs

5.3 Discussion

6. Expression of human adenosine deaminase in transgenic tobacco BY-2 cell suspension cultures

6.1 Overview
6.2 Results

6.2.1 Extra-cellular ADA-activities in BY-2 cell suspension transformed with ADA expressing constructs

6.2.2 Intra-cellular ADA-activities in BY-2 cell suspension transformed with ADA expressing constructs

6.3 Discussion

7. Discussion

8. References

9. Appendices

Appendix A- Presentations, posters and abstract publications
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Catalytic conversion of adenosine into inosine</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Purine metabolism pathway</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Summary of the effects of ADA deficiency</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Lymphocyte development and effect of ADA deficiency and other SCID disorders</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>A restriction map of pJIT</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Restriction enzyme maps of Plant binary vectors</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>(a) pGreenI0029 plasmid, (b) pSoup plasmid</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Human ADA cDNA</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) A human cDNA clone for ADA inserted into pJIT XbaI sites and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) SafeView™ stained 1% agarose gel of XbaI digested pJITADA</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) Human ADA cDNA including 35S CaMV promoter and terminator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inserted into EcoRV site in pGreenI0029 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) SafeView™ stained 1% agarose gel of EcoRV digested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pGreenI002935SADA</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>SafeView™ stained 1% agarose gel of SalI digested</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pGreenI002935SADA and pSoup</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Schematic diagram depicting minimal 5’ UTR configuration</td>
<td>63</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic diagram of the gene construct pΔ5’UTR_ADA</td>
<td>64</td>
</tr>
<tr>
<td>3.7</td>
<td>Tobacco Mosaic Virus (TMV) 5’ Omega UTR DNA sequence</td>
<td>64</td>
</tr>
<tr>
<td>3.8</td>
<td>A PCR-amplified ADA cDNA and 5’Ω TMV UTR DNA inserted into pJIT</td>
<td>65</td>
</tr>
<tr>
<td>3.9</td>
<td>Tobacco Mosaic Virus (TMV) 3’ un-translated region sequence</td>
<td>66</td>
</tr>
<tr>
<td>3.10</td>
<td>TMV 3’UTR inserted into p5’ Omega_ADA construct</td>
<td>66</td>
</tr>
<tr>
<td>3.11</td>
<td>5’ Tobacco RUBISCO small subunit 5’ UTR DNA sequence</td>
<td>67</td>
</tr>
</tbody>
</table>
Figure 3.12: pSS 5’UTR_ADA construct 68
Figure 3.13: Synthesised PR1a-ADA fusion 71
Figure 3.14: Synthesised extensin-ADA fusion 71
Figure 3.15(a): p5’Omega-PR1a_ADA construct and 72
(b): p5’Omega-Extensin_ADA construct
Figure 3.16: ADA-3’ Hydroxyproline fusion 75
Figure 3.17: p5’Omega-Extensin_ADA-3’Hydroxyproline construct 75

Figure 4.1: ADA specific-activities measured in the leaves of 6 transgenic plant lines transformed with pCDNA_ADA cytosolic construct 80
Figure 4.2: ADA specific-activities measured in tobacco plants transformed with various cytosolic constructs 80
Figure 4.3: Western blot of proteins extracted from the leaves of 3 transgenic tobacco plants transformed with cytosolic construct, pCDNA_ADA 83
Figure 4.4: Southern blot of genomic DNA of transformed (pCDNA_ADA) and non-transformed tobacco plant leaves 85
Figure 4.5: (a) Northern blot of total RNA extracted from pCDNA_ADA transformed and non-transformed tobacco plant leaves and (b) SafeView™ stained 2 % agarose gel of rRNA 87
Figure 4.6: ADA specific-activities measured in BY-2 calli transformed with various cytosolic constructs 89
Figure 4.7: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli and (b) SafeView™ stained 2 % agarose gel of rRNA 93
Figure 4.8: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli and (b) SafeViewTM stained 2 % agarose gel of rRNA

Figure 5.1: ADA specific-activities measured in BY-2 calli transformed with various cytosolic and apoplast directing constructs

Figure 5.2 & 5.3: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli and (b) SafeViewTM stained 2 % agarose gel of rRNA

Figure 5.4: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli and (b) SafeViewTM stained 2 % agarose gel of rRNA

Figure 6.1: Extra-cellular ADA-activities measured in various cytosolic and apoplast-directing constructs in transformed BY-2 cell suspensions

Figure 6.2: Intra-cellular ADA-activities measured in various cytosolic and apoplast-directing constructs in transformed BY-2 cell suspensions

Figure 6.3: Total soluble proteins (g L-1) measured in Tobacco BY-2 cell suspension
List of tables

Table 1.1: Plant-based vaccines, antibodies and therapeutic proteins in clinical development or on the market

Table 1.2: Comparison of recombinant protein production in a range of model systems

Table 1.3: Plant produced human enzymes

Table 2.1: Dilution series of DIG labelled DNA

Table 2.2: Protein assay

Table 3.1: Cytosolic constructs

Table 3.2: Subcellular targeting constructs

Table 4.1: Pair-wise comparisons of ADA specific-activities measured in transgenic tobacco leaves using Mann-Whitney U test (5% level)

Table 4.2: Pair-wise comparisons of median ADA specific-activities measured in transgenic tobacco leaves

Table 4.3: Genome T-DNA copy number and ADA specific-activities of transgenic tobacco plants transformed with pCDNA_ADA construct

Table 4.4: ADA specific-activities of tobacco plants transformed with pCDNA_ADA alongside ADA mRNA amounts measured in northern blots & T-DNA copy number

Table 4.5: Pair-wise comparisons of ADA specific-activities measured in transgenic tobacco BY-2 calli using the Mann-Whitney U test (5% level)

Table 4.6: Pair-wise comparisons of median ADA specific activities measured in transgenic tobacco BY-2 calli

Table 4.7: ADA specific-activities of BY-2 calli transformed with cytosolic constructs alongside ADA mRNA amounts measured in northern blots
Table 5.1: (a) Pair-wise comparisons of ADA specific-activities measured in transgenic tobacco calli using Mann-Whitney U test (5% level)

Table 5.1: (b) Pair-wise comparisons of median ADA specific-activities measured in transgenic tobacco BY-2 calli

Table 5.2: ADA specific-activities of tobacco BY-2 calli transformed with cytosolic and apoplast-directing constructs alongside ADA mRNA amounts measured in northern blots

Table 6.1: Pair-wise comparisons of highest extra-cellular ADA specific-activities measured in transgenic tobacco BY-2 cell suspensions

Table 6.2: Pair-wise comparisons of highest intra-cellular ADA-activities measured in transgenic tobacco BY-2 cell suspensions

Table 6.3: Highest intra and extra-cellular ADA-activities in transgenic tobacco BY-2 suspensions

Table 6.4: High-yield expression of pharmaceutical proteins in plant cell suspension cultures

Table 7.1: Summary of the highest ADA levels obtained in plants, BY-2 calli and BY-2 cell suspensions transformed with various constructs

Table 7.2: Summary of highest combined intra and extra-cellular ADA levels obtained in BY-2 cell suspensions transformed with various constructs
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-AA</td>
<td>4-aminoantipyrine</td>
</tr>
<tr>
<td>ADA</td>
<td>Adenosine deaminase</td>
</tr>
<tr>
<td>AGPs</td>
<td>Arabinogalactan proteins</td>
</tr>
<tr>
<td>BiP</td>
<td>Protein binding motifs</td>
</tr>
<tr>
<td>BMT</td>
<td>Bone marrow transplant</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BY-2</td>
<td>Bright yellow-2</td>
</tr>
<tr>
<td>CaMV</td>
<td>Cauliflower mosaic virus</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>dAdo</td>
<td>Deoxyadenosine</td>
</tr>
<tr>
<td>dATP</td>
<td>Deoxyadenosine triphosphate</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethyl pyrocarbonate</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotides</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EHSPT</td>
<td>N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline</td>
</tr>
<tr>
<td>eIF4F</td>
<td>Eukaryotic translation initiation factor 4F</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERT</td>
<td>Enzyme replacement therapy</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and drug administration</td>
</tr>
<tr>
<td>GCD</td>
<td>Glucocerebrosidase</td>
</tr>
<tr>
<td>GD</td>
<td>Gaucher’s disease</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GT</td>
<td>Gene therapy</td>
</tr>
<tr>
<td>GUS</td>
<td>ß-glucuronidase</td>
</tr>
<tr>
<td>HBsAg</td>
<td>Hepatitis B surface antigen</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HDEL</td>
<td>H-Histidine, D-Aspartic acid, E-Glutamic acid, L-Leucine</td>
</tr>
<tr>
<td>hGH</td>
<td>Human growth hormone</td>
</tr>
<tr>
<td>hGM-CSF</td>
<td>Human granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>HSCs</td>
<td>Haematopoietic stem cells</td>
</tr>
<tr>
<td>HRGPs</td>
<td>Hydroxyproline(Hyp)-rich glycoproteins</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>Hyp</td>
<td>Hydroxyproline</td>
</tr>
<tr>
<td>IFNa2</td>
<td>Interferon α2</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor-1</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin-G</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropylthio-(3-D-galactoside)</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>KDEL</td>
<td>K-Lysine, D-Aspartic acid, E-Glutamic acid, L-Leucine</td>
</tr>
<tr>
<td>KOAc</td>
<td>Potassium acetate</td>
</tr>
<tr>
<td>LAMAN</td>
<td>Lysosomal acid α-mannosidase</td>
</tr>
<tr>
<td>LB</td>
<td>Luria broth</td>
</tr>
<tr>
<td>MCS</td>
<td>Multiple cloning site</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige Skoog</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
</tbody>
</table>
NaCl Sodium Chloride
NaOH Sodium Hydroxide
NDV Newcastle disease virus
NOS Nopaline synthetase
NT Non-transformed
nt Nucleotide
(ocs)3mas Octopine synthase 3mas promoter
ORF Open reading frame
oriV Virulence origin gene
PEG-ADA Bovine ADA coupled to polyethylene glycol
PBLs Peripheral blood lymphocytes
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PNP Purine nucleoside phosphorylase
POD Peroxidase
PR1a Pathogenesis related protein 1a
PVP Polyvinylpyrrolidone
rAAT Recombinant human α1-antitrypsin
RAmy3D Rice α-amylase 3D
RBCs Red blood cells
RNA Ribonucleic acid
RUBISCO Ribulose-1,5-bisphosphate carboxylase oxygenase
SAH S-adenosylhomocysteine hydrolase
scFv Single-chain variable fragment
SCID Severe combined immune deficiency disorders
SDS -PAGE Sodium dodecyl sulphate/ polyacrylamide gel electrophoresis
T1, T2 etc Primary transformed plants
T-DNA Transfer DNA
TdT Deoxynucleotidyl transferase
TEMED Tetramethylethylenediamine
TMV Tobacco mosaic virus
Tris 2-Amino-2-hydroxymethyl-propane-1,3-diol
TSP Total soluble protein
USFDA United States Food and Drug Administration
UTR Un-translated region
UV Ultraviolet
Var: Variety
WT Wild type
W/V Weight/volume
X-gal 5-bromo-4-chloro-indolyl-β-D-galactopyranoside
XOD Xanthine oxidase

Nucleic acid abbreviations
A- Adenine.
C- Cytosine.
G- Guanine.
T- Thymine.
Amino acid abbreviations

<table>
<thead>
<tr>
<th>Abbreviation 1 letter abbreviation</th>
<th>Amino acid name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala A</td>
<td>Alanine</td>
</tr>
<tr>
<td>Arg R</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asn N</td>
<td>Asparagine</td>
</tr>
<tr>
<td>Asp D</td>
<td>Aspartic acid</td>
</tr>
<tr>
<td>Cys C</td>
<td>Cysteine</td>
</tr>
<tr>
<td>Gln Q</td>
<td>Glutamine</td>
</tr>
<tr>
<td>Glu E</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>Gly G</td>
<td>Glycine</td>
</tr>
<tr>
<td>His H</td>
<td>Histidine</td>
</tr>
<tr>
<td>Ile I</td>
<td>Isoleucine</td>
</tr>
<tr>
<td>Leu L</td>
<td>Leucine</td>
</tr>
<tr>
<td>Lys K</td>
<td>Lysine</td>
</tr>
<tr>
<td>Met M</td>
<td>Methionine</td>
</tr>
<tr>
<td>Phe F</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Pro P</td>
<td>Proline</td>
</tr>
<tr>
<td>Pyl O</td>
<td>Pyrrolysine</td>
</tr>
<tr>
<td>Ser S</td>
<td>Serine</td>
</tr>
<tr>
<td>Sec U</td>
<td>Selenocysteine</td>
</tr>
<tr>
<td>Thr T</td>
<td>Threonine</td>
</tr>
<tr>
<td>Trp W</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Tyr Y</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Val V</td>
<td>Valine</td>
</tr>
<tr>
<td>Xaa X</td>
<td>Any amino acid</td>
</tr>
</tbody>
</table>

XVIII
Chapter 1
Introduction
1.1 Adenosine deaminase and ADA deficiency

Human adenosine Deaminase (ADA; EC 3.5.4.4) is an enzyme, which consists of 363 amino acids and is 41kDa in size. Also referred to as adenosine aminohydrolase, ADA is a ubiquitous enzyme, belonging to the purine metabolism pathway (figure 1.2), it catalyses the conversion of adenosine into inosine (figure 1.1) and deoxyadenosine (dAdo) into deoxyinosine, through hydrolysis of a purine amino group (Benveniste and Cohen, 1995). In addition to catalytic function in the cell cytoplasm, ADA was found to interact with cell surface receptor CD26 and other specific adenosine receptors. ADA appears to co-localise with these adenosine receptors found on dendritic cells and interact with CD26 on T-lymphocytes leading to an increased production of pro-inflammatory cytokines (interferons and interleukins) and T-helper cells (Pacheco et al., 2005).

![Adenosine and Inosine](image.png)

Figure 1.1: Catalytic reaction of adenosine into inosine. ADA also hydrolyses deoxyadenosine. The amino groups are cleaved during hydrolysis, which results in an amide, and an ammonia molecule.

The disease adenosine-deaminase-deficiency is a severe combined immunodeficiency, a fatal inherited disorder caused by mutations in the ADA gene on chromosome 20, which affects the development and function of immune cells (figure 1.4). Although ADA is present in all tissues, there is higher activity in lymphocytes during their development (Tsuboi et al., 1995). The number of individuals diagnosed with deficiency of ADA ranges from 1:200,000 to 1:1,000,000 births, affecting all ethnic groups. However the prevalence is higher in certain
communities where the consanguinity is greater (Hershfield, 2011). The disease is characterized by a purine defect that leads to impaired immune function, recurrent infections and systemic metabolic abnormalities. It is an autosomal-recessive disorder representing 20% of the severe immune deficiency disorders (SCID) (Aiuti, 2004). As shown in figure 1.3, deficiency of ADA causes an increase in adenosine and 2’-deoxyadenosine (dAdo) in the plasma and an increase of nucleotides in lymphoid tissues, red blood cells and organs such as the kidney and the liver. These accumulations lead to an inactivation of S-adenosylhomocysteine hydrolase which in due course inhibit certain lipids, proteins and nucleic acid methylations. When dAdo levels increase there is also a significant inhibition of another enzyme, ribonucleotide reductase, which in turn causes a deoxynucleotide (dNTP) imbalance. The imbalance of dNTP leads to impairment of the T lymphocytes’ ability to repair and synthesise DNA. This causes an increase of denatured DNA in the cell nucleus, which in turn activates apoptosis (Benveniste and Cohen, 1995). Improper ADA function, imbalances of dATP, dAdo, and dNTP, as well as S-adenosylhomocysteine hydrolase impairment leads to an active apoptosis of thymocytes, resulting in T-cell death and severe combined immunodeficiency syndrome (Gangi-Peterson et al., 1999). As B-cell activity is controlled by T-cells, a decrease in T-cell function also results in dysfunctional B-cells. Furthermore, during maturation and recombination of the T-cell receptor, thymocytes are increasingly affected by ADA deficiency (Benveniste and Cohen, 1995). At this stage an imbalance of the nucleotide pool, caused by a deficiency of ADA, leads to N-region insertion alterations during T-cell receptor V(D)J recombination. A change in N-region substitutions with A-T nucleosides rather than G-C nucleosides leads to reduced frequency of recombination in T-cell immunoglobulins. In addition to the above, Van de Wiele et al., (2002) have shown that dATP-induced release of cytochrome c in mitochondria, also initiates
apoptosis and this is now thought to be the main mechanism of dATP toxicity in ADA deficient patients.

Since the disorder is genetic, symptoms of ADA deficiency SCID are seen in affected infants at birth. However in some instances, ADA deficiency cannot be detected until later childhood or even adulthood due to mutations which partially impair the activity of ADA. Complete deficiency of ADA causes severe onset syndrome in SCID infants which exhibit lymphopenia, growth failure, opportunistic infections, and impaired function of cellular and humoral immunity, due to severe depression of T-cell function and antibody responses. There are about 40 identified alleles known to cause ADA SCID and some locations on the gene are highly susceptible to mutations (Hirschhorn et al., 1990).

Figure 1.2: Purine metabolism pathway, modified from Kather, (1990).
Figure 1.3: Summary of the effects of ADA deficiency.

Figure 1.4: Lymphocyte development and effects of ADA deficiency and other SCID disorders, adapted from Kumar et al., (2009).
1.2 Management options for ADA-SCID

Management of ADA deficiency is based on restoration of a functional immune system and can be attained by three main management options which include bone marrow transplant (BMT), somatic gene therapy (GT) and enzyme replacement therapy (ERT) (Booth et al., 2007). In the first of these, the bone marrow transplant from a haploidentical donor is a fairly up-front process as the patients are already immunocompromised. It is difficult however to find donors with haploidentical characteristics and who themselves are not ADA deficient (Haddad et al., 1999). Once the bone marrow transplant has been performed, the success rate of recovery is above 90% with fully recovered B-cell and T-cell functions (Hershfield et al., 2001; Rubocki et al., 2001). Buckley et al. (1999) reported that 11 ADA deficient patients out of 13 survived after bone marrow transplantation with an improvement of T-cell numbers and function after 3 to 4 months of transplantation.

The second option, somatic gene therapy, represents a promising therapeutic option in general for inherited disorders of the immune system. Treatment of inherited diseases using gene transfer approach was first performed on adenosine deaminase deficiency (Anderson et al., 1990). The early trials of gene therapy showed the possibility and safety of engineering peripheral blood lymphocytes and haematopoietic stem cells using retroviral vectors (Aiuti, 2004). Results of these studies showed that gene therapy with peripheral blood lymphocytes allowed correction of the T-cell defect, but provided insufficient systemic detoxification shown by increased purine metabolites leading to decreased numbers of B-cells. However the gene transfer of bone marrow stem cells demonstrated a full correction of metabolic and immunological defects of adenosine deaminase deficiency with normalisation of peripheral blood lymphocyte counts, thymic activity restoration and improved immunoglobulin levels (Aiuti, 2004).
The third option, enzyme replacement therapy (ERT) with PEG-ADA has been used for more than 20 years to treat ADA deficient SCID patients (Booth et al., 2007). To begin with, ERT was based on the use of frozen irradiated red blood cells (erythrocytes) which can indirectly add the missing supply of ADA. However, Polmar et al., (1976) showed that some patients treated with this therapy showed a similar depressed immune response as that found in untreated ADA deficient patients. As a result it was thought that introduction of ADA, by directly injecting the enzyme, is a far better approach than using irradiated red blood cells. However, non-conjugated ADA enzyme was found to undergo rapid degradation in the serum and in some cases deleterious immune responses resulted. Hence, polyethylene glycol (PEG) conjugated bovine ADA (PEG-ADA) is used by intramuscular injection to treat ADA deficiency. PEG conjugation blocks protease access to ADA in the serum and consequently lengthens the plasma half-life of ADA by more than 100-fold (Bordignon et al., 1995). Weekly administration of PEG-ADA (15-60 U kg\(^{-1}\) per week) improves the deleterious effects of ADA deficiency by correcting metabolic abnormalities, as PEG-ADA permits variable improvements in lymphocyte counts and immune function. As expected dAdo and dATP levels are also decreased and improvements in growth, reduced incidents of life-threatening infections resulted from this treatment (Gaspar et al., 2009; Hershfield, 2011). If treatment is continued for longer than a year most individuals develop antibodies against bovine PEG-ADA which leads to inhibition of catalytic activity and enhanced clearance in some patients (Chaffee et al., 1992). Continuing PEG-ADA therapy is also extremely costly and can cost from $ 200,000 to $ 300,000 per patient annually (Chan et al., 2005). Hence, ERT with a recombinant human ADA is thought to be a viable and cheaper alternative in the treatment of patients over a life-long period. As plants possess well established foreign protein production mechanisms and human-like post-translational modification systems,
along with many other advantages over mammalian and prokaryotic production systems, plant production systems represent a reasonable choice for the development of a recombinant human ADA production system.

1.3 ADA and cancer treatment

High levels of adenosine are known to indirectly stimulate the proliferation of some forms of cancer, inhibiting the activation of cytokine production in killer T-cells which in turn stimulates metastasis (Sitkovsky et al., 2005; Loshkin et al., 2006). Since ADA catalyzes the conversion of adenosine to inosine, it has a potential as a drug in the treatment of adenosine-sensitive tumours. For example, Sitkovsky et al., (2005) have shown that ADA along with adenosine receptor antagonists can enhance the immune reaction against some tumours. In addition, adenosine deaminase in conjugation with intravenous doses of polyalkylene oxide has been shown to substantially reduce the growth and spread of some tumours in mice (Filpula et al., 2009). Hence, there would seem to be another potential use for recombinant human adenosine deaminase in the treatment of some types of cancer.

1.4 Production of biopharmaceuticals in transgenic plants and cell cultures

Plants and plant products have been used for centuries for the treatment of human disease. Botanical gardens presented a wealth of materia medica for therapeutic use by the latter part of 16th century. In the 17th century, a scientific approach and the discovery of new pharmacological remedies led to the identification of active principles and purification for therapeutic use (Winslow and Kroll, 1998). At present, about a quarter of prescription drugs also contain medicaments which are of botanical origin. The current advances in biotechnology have led to renewed hopes in producing new medicaments from botanical sources, including fully functional pharmacologically imperative recombinant human
proteins (Fischer and Emans, 2000). Recombinant human insulin produced in bacteria was the first commercially produced biopharmaceutical to be made in 1982 by Lilly, USA; and coincides with the development of a first genetically modified plant (Fraley et al., 1983). The development of genetically modified plant was followed by successful production of biopharmaceuticals in plants, such as expression of human growth hormone fusion protein (Barta et al., 1986), interferon (DeZoeten et al., 1989), monoclonal antibodies (Hiatt et al., 1989), and human serum albumin (Sijmons et al., 1990). Since then, scores of biopharmaceuticals were produced in plant expression systems (table 1.1).

Although bacteria are classed as convenient and cost-effective production systems for producing smaller human proteins (e.g. human insulin), incapacity of assembly steps and post-translational modifications, which are essential for biological activity of most human proteins, hinders their use for production of more complex proteins. In addition, effective removal of contaminating lipopolysaccharides from recombinant protein is extremely expensive in bacterial expression systems. Plants on the other hand possess an efficient protein synthesis mechanism, and with established gene expression systems, plants can be used to produce large amounts of proteins (Fischer and Emans, 2000). Due to the absence of mammalian pathogens, unlike mammalian cell systems, plant expression systems possess some important advantages over mammalian and bacterial expression systems (table 1.2) (Fischer and Emans, 2000). Other advantages of plant-derived biopharmaceuticals also include: higher product safety, higher production scale, lower production costs, easy storage and distribution.
Table 1.1: Plant-produced therapeutic proteins, antibodies and vaccines in clinical development or on the market.

<table>
<thead>
<tr>
<th>Product</th>
<th>Plant host</th>
<th>Indication</th>
<th>Route of administration</th>
<th>Product development stage</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.coli LT-B</td>
<td>Potato</td>
<td>Diarrhoea</td>
<td>Oral</td>
<td>Phase 1</td>
<td>Mason et al., (1998); Tacket et al., (2004)</td>
</tr>
<tr>
<td>Norwalk virus CP</td>
<td>Potato</td>
<td>Diarrhoea</td>
<td>Oral</td>
<td>Phase 1</td>
<td>Mason et al., (1996)</td>
</tr>
<tr>
<td>Newcastle disease virus HN</td>
<td>Tobacco cell suspension</td>
<td>Newcastle disease (poultry)</td>
<td>Subcutaneous</td>
<td>USDA approved (Marketed)</td>
<td>http://www.dowagro.com</td>
</tr>
<tr>
<td>H5N1 influenza HA VLP</td>
<td>Nicotiana benthamiana</td>
<td>H5N1 “avian” influenza</td>
<td>Intramuscular</td>
<td>Phase 1 (ongoing)</td>
<td>Yusibov et al., (2012)</td>
</tr>
<tr>
<td>H5N1 influenza HAI1</td>
<td>Nicotiana benthamiana</td>
<td>H5N1 “avian” influenza</td>
<td>Intramuscular</td>
<td>Phase 1 (ongoing)</td>
<td>Yusibov et al., (2012)</td>
</tr>
<tr>
<td>H1N1 influenza HAC1</td>
<td>Nicotiana benthamiana</td>
<td>H1N1 “swine” influenza</td>
<td>Intramuscular</td>
<td>Phase 1 (ongoing)</td>
<td>Shoji et al., (2012)</td>
</tr>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Streptococcus surface antigen I/II</td>
<td>Tobacco</td>
<td>Dental caries</td>
<td>Topical</td>
<td>Phase 2; EU approved</td>
<td>http://www.planetbiotechnology.com</td>
</tr>
<tr>
<td>Anti-αCCR5</td>
<td>Nicotiana benthamiana</td>
<td>HIV</td>
<td>Topical</td>
<td>Pre-clinical</td>
<td>Pogue et al., (2010)</td>
</tr>
<tr>
<td>Anti-HIV gp120</td>
<td>Maize</td>
<td>HIV</td>
<td>Topical</td>
<td>Pre-clinical</td>
<td>Yusibov et al., (1997)</td>
</tr>
<tr>
<td>Hepatitis B surface antigen</td>
<td>Potato</td>
<td>Hepatitis B vaccine purification</td>
<td>Not applicable</td>
<td>Phase 1</td>
<td>Kapusta et al., (1999); Streatfield, (2006)</td>
</tr>
<tr>
<td>Therapeutic and dietary proteins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucocerebrosidase</td>
<td>Carrot cell suspension</td>
<td>Gauchers disease</td>
<td>Intravenous</td>
<td>USFDA approved in 2012 (Marketed)</td>
<td>Shaaltiel et al., (2007)</td>
</tr>
<tr>
<td>Insulin</td>
<td>Safflower</td>
<td>Diabetes</td>
<td>Subcutaneous</td>
<td>Phase 1/2 (marketing expected)</td>
<td>Markley et al., (2006)</td>
</tr>
<tr>
<td>Gastric lipase</td>
<td>Maize</td>
<td>Cystic fibrosis, pancreatitis</td>
<td>Oral</td>
<td>Phase 2 (marketed as analytical reagent)</td>
<td>Zhong et al., (2006)</td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>Maize</td>
<td>Gastro-intestinal infections</td>
<td>Oral</td>
<td>Phase 1 (marketed as analytical reagent)</td>
<td>Samyn-Petit et al., (2001)</td>
</tr>
</tbody>
</table>

Table modified from Yusibov *et al.*, (2011); Paul and Ma, (2011).
Table 1.2: Comparison of recombinant protein production in a range of model systems.

<table>
<thead>
<tr>
<th></th>
<th>Transgenic plants</th>
<th>Plant viruses</th>
<th>Yeast</th>
<th>Bacteria</th>
<th>Mammalian cell cultures</th>
<th>Transgenic animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost/storage</td>
<td>Cheap/RT</td>
<td>Cheap/-20°C</td>
<td>Cheap/-20°C</td>
<td>Cheap/-20°C</td>
<td>Expensive</td>
<td>Expensive</td>
</tr>
<tr>
<td>Distribution</td>
<td>Easy</td>
<td>Easy</td>
<td>Feasible</td>
<td>Feasible</td>
<td>Difficult</td>
<td>Difficult</td>
</tr>
<tr>
<td>Gene size</td>
<td>Not limited</td>
<td>Limited</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Limited</td>
<td>Limited</td>
</tr>
<tr>
<td>Glycosylation</td>
<td>'Correct'?</td>
<td>'Correct'?</td>
<td>Incorrect</td>
<td>Absent</td>
<td>'Correct'</td>
<td>'Correct'</td>
</tr>
<tr>
<td>Multimeric protein assembly (SigA)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Production cost</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Production scale</td>
<td>Worldwide</td>
<td>Worldwide</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
<td>Limited</td>
</tr>
<tr>
<td>Production vehicle</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Propagation</td>
<td>Easy</td>
<td>Feasible</td>
<td>Easy</td>
<td>Easy</td>
<td>Hard</td>
<td>Feasible</td>
</tr>
<tr>
<td>Protein folding accuracy</td>
<td>High?</td>
<td>High?</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Protein homogeneity</td>
<td>High?</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Protein yield</td>
<td>High</td>
<td>Very high</td>
<td>High</td>
<td>Medium</td>
<td>Medium-High</td>
<td>High</td>
</tr>
<tr>
<td>Public perception of risk</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Safety</td>
<td>High</td>
<td>High</td>
<td>Unknown</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Scale-up costs</td>
<td>Low</td>
<td>Low</td>
<td>High**</td>
<td>High**</td>
<td>High**</td>
<td>High</td>
</tr>
<tr>
<td>Therapeutic risk*</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time required</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

*-Residual viral sequences, oncogenes, endotoxins; **-Large, expensive fermenters. Table adapted from Fischer & Emans, (2000).

In the year 2006, Dow AgroSciences acquired the licence for first plant-produced biopharmaceutical product, a poultry vaccine developed against Newcastle disease virus. This achievement of Dow AgroSciences is a significant breakthrough for plant-produced biopharmaceuticals. The Concert™ Plant-cell-produced, bio-contained system utilizes tobacco plant cells as an alternative to an expression of foreign proteins in whole plants (Kaiser, 2008).

A recombinant glucocerebrosidase (Taliglucerase alfa), an enzyme produced by Protalix Biotherapeutics which is used to treat Gaucher’s disease, was the first plant cell-produced
human enzyme to be approved by the United States Food and Drug Administration which was approved in 2012 (Pfizer Press Releases, 2012).

Table 1.1, shows an array of plant species used in recent years to produce biopharmaceuticals. The choice of plant species varies and may depend on the type of pharmaceutical product, storage of the product and ease of downstream processing. Most of the early attempts to generate transgenic plants were performed in tobacco which remains a model expression system to date. Due to ease of gene transfer, well established expression systems and being a non-food crop, tobacco has an advantage over other plant systems. Furthermore, well-established tobacco suspension culture expression systems provide a better containment opportunity and also evade the undesirable effects of alkaloids which are present in tobacco whole plants. They also allow foreign protein secretion into the medium, which greatly cuts the cost of downstream processing.

1.5 Expression of recombinant genes in plant cells and tissues

Expression of foreign proteins in plant cells and tissues requires a promoter to drive the expression of linked foreign cDNAs. The Cauliflower Mosaic Virus (CaMV) 35S promoter (Odell et al., 1985) is the most commonly used constitutive promoter when foreign genes in plants are expressed. Mason et al., (1992) demonstrated the production of first plant-derived vaccine (hepatitis B surface antigen (HBsAg) in tobacco plants and established the use of the CaMV 35S promoter in expressing biopharmaceuticals. Mason et al., (1992) prepared a construct containing CaMV 35S promoter upstream of the hepatitis B surface antigen (HBsAg) coding region trailed by the downstream nopaline synthetase (NOS) terminator. The CaMV 35S promoter sequence has been modified in recent years to enhance efficiency of expression by approximately 10-fold (He et al., 2008). The Ubiquitin promoter used in
expression of scFv antibodies and insulin-like growth factor-1 (IGF-1) in rice cells (Panahi et al., 2004; Torres et al., 1999) and the hybrid (ocs)3mas promoter used in over expression of HBsAg in soybean cell cultures (Smith et al., 2002) are two other constitutive promoters commonly used in foreign gene expression in plant cells, especially monocotyledons.

Another kind of promoter which has been reported extensively in recent years is the inducible promoter, where expression regulation is controlled by external stimuli such as sucrose, salts, steroids, alcohol or environmental stress factors (Huang and McDonald, 2009). As cell growth and protein production are not related to each other, use of inducible expression may be advantageous in some cases, allowing individual optimisation of both processes, to yield maximum protein levels (Sharma and Sharma, 2009). Rice α-amylase 3D (RAmy3D) promoter is a commonly used inducible promoter where sucrose starvation promotes the high-level expression of the foreign genes in rice and has been used to produce a range of human therapeutic proteins in rice cell suspension cultures including α1-antitrypsin, serum albumin, lysozyme (Huang and McDonald, 2009), granulocyte-macrophage colony-stimulating factor (Shin et al., 2003), growth hormone (Kim et al., 2008a) and interleukin-12 (Shin et al., 2010b).

Once transformed, transcription of the gene of interest can be affected by different factors such as, the position of gene insertion in the plant genome (Springer et al., 1995) and the organization of the gene integration (Hepburn et al., 1983). Agrobacterium-mediated transformation is associated with random integration of T-DNA into the plant genome (DeBeuckeleer et al., 1981). The earliest reports show that transgene silencing by DNA methylation also plays a pivotal role in transcription (Hepburn et al., 1983). Stam et al., (1997) described that transfer of tandem copies of T-DNA at a single locus is frequently associated
with *Agrobacterium*-mediated transformation and it was also found that tandem inverted T-DNA repeats situated closer to the right border are also frequently associated with transgene silencing due to promoter methylation.

Choice of strong translational enhancer/regulation sequences is equally as important as the choice of promoter in increasing the yield of recombinant products. Gallie and Walbot, (1990) reported that the addition of 204-bases of the tobacco mosaic virus (TMV) 3’-untranslated region to foreign mRNA increased the gene expression a further 100-fold, increasing the stability of mRNA and enhancing the translation in a similar manner to polyadenylated mRNA. Furthermore, Gallie, (2002) demonstrated that the RNA 5’-leader sequence (omega-Ω) of TMV functions as a translational enhancer through recruiting the ribosomal initiation factor, eIF4F, and significantly enhances translation in both eukaryotes and prokaryotes. Another reported translational regulator used in plant expression constructs is the 5’ UTR of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RUBISCO), an enzyme which catalyzes the primary stage in carbon fixation in plants (Mazur and Chui, 1985). Patel et al., (2004) and (2006) demonstrated that the untranslated region from C4 *Amaranthus* and *Flaveria bidentis* RUBISCO small subunit1 mRNAs causes translational enhancement which led to increased expression of downstream foreign genes.

Although expression of foreign genes in plants can be enhanced using various promoter sequences such as 35S CaMV, 5’ and 3’-untranslated regions, in order to achieve commercial success of plant based production systems, improved strategies employed to accumulate foreign proteins are essential (Doran, 2006). Foreign proteins produced in plant systems undergo continuous degradation due to processes such as proteolysis and irreversible surface adsorption (Doran, 2006). Hence, it is of prime importance to employ measures in order to
reduce foreign protein degradation and loss. One such technique to preserve foreign proteins from proteolytic degradation is to target and anchor the recombinant proteins in the endoplasmic reticulum (ER) (Conrad and Fiedler, 1998). The plant cell ER contains less endogenous protease activity, providing a protective environment for foreign proteins (Nuttal et al., 2002). The incorporation of C-terminal motifs, such as KDEL and HDEL into recombinant proteins directed to the ER causes the retention of proteins within the ER and in turn prevents the protein from proteolytic degradation in the cytoplasm. Hellwig et al., (2004) described that foreign protein retention in the ER resulted in 10-100 times greater yields than those obtained by secretion. Petruccelli et al., (2006) also demonstrated the accumulation of monoclonal antibodies increased by 4-11-fold when retained in the ER as a fusion with the KDEL peptide.

Direction of recombinant proteins to the apoplast through sub-cellular targeting is another approach used to protect proteins from proteolytic degradation in the cytosol and also eject such proteins into the medium of cell suspensions. The apoplast is the non-living part of plant tissue, located out-side the cell membrane and composed of the cell walls, the intercellular spaces, and the lumen of dead structures such as xylem cells. Cell wall proteins which contain appropriate N-terminal signal peptide sequences undergo secretion into the apoplastic space. Signal sequences from proteins such as tobacco pathogenesis related protein (PR1a), when used in combination with recombinant proteins can target foreign proteins into the apoplast (Pen et al., 1993a). For instance the incorporation of the PR1a signal peptide at the N-terminus of the thermostable eubacterium endo-1, 4-β-D-glucanase was found to increase the yield by up to 26% of TSP in Arabidopsis leaves (Ziegler et al., 2000). Another N-terminal apoplast directing signal is found in plant extensins which are a well-characterized hydroxyproline-rich glycoprotein family, forming a major component of the cell wall.
(Showalter, 1993). Like the PR1a signal peptide, incorporation of an extensin signal peptide at the N-terminus of recombinant proteins directs secretion into the apoplast. Francisco et al., (1997) expressed bryodin 1, a potent ribosome-inactivating protein, as a soluble recombinant protein using the extensin signal peptide to secrete the protein into the culture medium. The purified bryodin 1 yield was 30 mg L$^{-1}$ of culture and showed an identical inhibitory activity to the native protein isolated from the roots of *Bryonia dioica*. Apoplast direction of recombinant therapeutic proteins has also been reported by Xu et al., (2007), where, an extensin signal peptide was used in conjunction with a C-terminal hydroxyproline (Hyp)-rich peptide to produce a hydroxyproline (Hyp)-rich glycoprotein. Chimeric expression of such glycoproteins (HRGPs) where a short C-terminal Hyp-Ser sequence directs extensive O-glycosylation, leads to addition of arabinooligosaccharides. Recombinant interferon-α2-arabinogalactan peptides (IFNα2-AGPs) targeted for secretion in this way increased yields by 350–1400-fold, compared to the non-glycosylated IFNα2 control. Finally, the signal peptide, AP24, from osmotin was used to direct recombinant proteins into the apoplast causing a 10^4-fold increase in the yield of recombinant epidermal growth factor in tobacco plants (Wirth et al., 2004).

Glycosylation of the recombinant proteins

During protein trafficking in plant cells, proteins undergo several post-translational modifications such as glycosylation, phosphorylation, methylation, ADP-ribosylation, oxidation and glycation (Gomrod and Faye, 2004). Covalently attaching an oligosaccharide side chain to a protein is known as glycosylation. Carbohydrates moieties attached to proteins are of two types. Carbohydrates linked to the amide moiety of asparagine (Asn) are known as N-glycans. Whereas carbohydrates linked to the hydroxyl group of threonine (Thr), serine (Ser) or hydroxyproline (Hyp) are known as O-glycans. Apart from nucleocytoplasmic O-
GlcAcylation, both N- and O-glycosylation occur in the secretory pathway (Gomrod et al., 2010). Biological activity of many therapeutic glycoproteins depends on the glycosylation structure of the protein. Hence, it is of extreme importance to have production systems which exert complex glycosylation patterns. The use of plant production system over production systems such as bacterial or yeast is beneficial due to the plant’s capability to exert complex glycosylation patterns similar to that found in human cells. Although plant expression systems exert complex glycosylation, inability to produce exact human-like glycosylation patterns on recombinant proteins plays a major limitation in using plant-made pharmaceuticals in human therapy especially for parenteral administration (Faye et al., 2005). This is because the existence of immunogenic glycoepitopes in complex plant N-glycans has been found to be immunogenic to mammals (Gomrod et al., 2005). However, strategies such as retaining recombinant proteins in the ER, inhibition of host plant glycosyltransferases and expression of heterologous glycosyltransferases for the addition of mammalian-like glycans, have been developed in recent years to re-design the protein N-glycan structures in plant expression systems (Saint-Jore-Dupas et al., 2007).

As well as N-glycans, plant protein O-glycans are also structurally different from human glycol-proteins. The most abundant O-glycans in human cells are mucin-type, O-GlcNAc and a xylose residue linked to Ser and Thr residues. Some of these may be extremely important in the physicochemical properties of some proteins. The most abundant O-glycosylated proteins present in plants are the extensins and various other arabinogalactan proteins. The extensins are O-glycosylated with galactose residues linked to most of the Serine (Ser) residues and arabinosyl residues linked to hydroxyproline (Hyp) residues (Showalter, 2001). The AGPs are the largest and the most extensively glycosylated proteins where, Hyp residues are linked with very large arabinogalactan glycomodules or smaller
arabinooligosaccharides (Qi et al., 1991). The use of extensive plant O-glycosylation to increase the stability of administered recombinant proteins in vivo has been investigated recently by Xu et al., (2007). Human INFα2 fused to an AGP O-glycomodule had an increased serum half-life in mice of 9 hours. Furthermore, these INFα2 fusions are non-immunogenic when administered intravenously in mice (Xu et al., 2007). Immuno-tolerance of AGPs fused to recombinant proteins was also recently confirmed with recombinant human growth hormone (hGH), which showed no adverse immune reaction when injected into mice (Xu et al., 2010).

1.6 Suspension cultures

Production of recombinant proteins of industrial and pharmaceutical importance in plant cell cultures is common because the cell cultures can be scaled up in controlled environments such as fermenters which provide containment. Developed in the 1950’s, plant cell suspension culture technology has been used for producing secondary metabolites such as digoxin, paclitaxel, and artemisinin (Georgiev et al., 2009; Huang and McDonald, 2009). With the latest advances in modern plant molecular biology, cell culture systems are used as a feasible alternative production system for therapeutic proteins. Human serum albumin (Sijmons et al., 1990) and chloramphenicol acetyltransferase (Hogue et al., 1990) were the first therapeutic proteins to be produced in plant cell suspension cultures. The first plant cell suspension culture produced therapeutic protein to be approved by the USDA was the poultry vaccine manufactured in transgenic tobacco cell cultures by Dow AgroSciences, against Newcastle disease virus (NDV) (Kaiser, 2008). Although, many recombinant proteins have been produced in plant cell suspension culture systems to date, tobacco BY-2 cell suspensions are the most common in use. Owing to a rapid doubling time, well established genetic transformation, low proteolytic activity, low production of secondary metabolites, the
capability to carry out post-translational modifications and reduced post-translational silencing effects, expression of therapeutic proteins in tobacco BY-2 plant cell cultures possess prominent advantages over whole plants (Lee et al., 2000; Su and Lee, 2007). Furthermore, purification of recombinant proteins from suspension cultures is relatively straightforward when targeted for secretion (Doran, 2000): where secreted proteins can be isolated from the suspension medium by filtration, precipitation and chromatographic techniques (Fischer et al., 1999a)

Efficient downstream processing of recombinant proteins from suspension cultures is extremely vital in order to increase the yield of recombinant proteins from plants. Hence, it is pivotal to adopt techniques to extract entire recombinant protein products preserved from any degradation. Once cells lyse to release intracellular products, the proteases in plant cells begin to degrade the proteins. Hence, choice of a suitable buffer and growth medium containing either protein stabilizing agents or protease inhibitors is imperative to enhance yields. Incorporation of 0.75 g L\(^{-1}\) polyvinylpyrrolidone (PVP)(MW 360,000), a protein stabilizing agent, into the culture medium was found to enhance the yield of extra-cellular heavy chain monoclonal antibodies by 35-fold due to the protein stabilizing effect of PVP (LaCount et al., 1997). Further to this, Lee et al., (2002) tested two other stabilizing polymers (polyethylene glycol and gelatine), as well as PVP in order to stabilize the secreted protein, hGM-CSF, in the culture medium. Gelatine was found to be the most effective stabilizing agent among three polymers. Addition of 5 % gelatine into the culture medium increased the yield by 4.6-fold over a corresponding control (Lee et al., 2002). However, it was further revealed that the addition of gelatine into the culture medium seemed to be negatively affecting cell growth in suspension after day 5 and in turn reduced overall production of hGM-CSF (Lee et al., 2002).
1.7 Plant produced human enzymes for enzyme replacement therapy

Like ADA deficiency, Gaucher’s disease (GD) is another autosomal recessive inherited disorder which can be treated by ERT. Gaucher’s disease is a condition caused by glucocerebrosidase (GCD) enzyme deficiency which leads to lysosomal dysfunction. Gaucher’s disease is of three types. Type I (non-neuropathic type), Type II (acute infantile neuropathic form) and Type III (the chronic neuropathic form). The most common of the three, GD type 1 can be treated by ERT owing to the lack of a central nervous affect (Pastores et al., 2011). The concept of treating GD with ERT was first proposed in the 1960s and with the advent of Alglucerase extracted from human placental tissue (Genzyme) in 1991, ERT for GD became a reality. A recombinant version of glucocerebrosidase, Imiglucerase (Cerezyme), produced in Chinese hamster ovary (CHO) cells was soon after approved by the FDA for patient use in 1994 and it was found that ERT with Cerezyme significantly improved the condition of the patients (Aerts et al., 2010). In 2010 another recombinant version of GCD, Velaglucerase Alfa (Vpriv), produced in cell lines of human fibroblasts through gene-activation technology, was approved by the FDA. A recombinant GCD produced in plant cells is also in production as Shaaltiel et al., (2007) have successfully produced a recombinant human GCD (prGCD) with terminal mannose glycans, in carrot cell suspensions, directed to vacuoles with the use of C-terminal plant-specific sorting signals. Biological uptake of the GCD in humans’ suffering from Gaucher’s disease, via macrophage mannose receptors is assisted by mannose residues. Hence, the in vitro exposure of mannose residues, as in the case for Cerezyme, is not required. Following the scrutiny of clinical, preclinical and phase I trials (Aviezer et al., 2009) prGCD (Talglycerase alfa) has been approved by the United States Food and Drug Administration (FDA) in 2012 and is the first plant-derived human enzyme product to be approved by FDA (Pfizer Press Releases, 2012).
In another attempt to produce a recombinant enzyme for ERT, De Marchis et al. (2011) have demonstrated the production of recombinant α-mannosidase (LAMAN) in transgenic tobacco plants for the treatment of a rare lysosomal storage disorder, alpha-mannosidosis: a congenital autosomal recessive disorder that leads to mental and physical deterioration due to accumulation of oligosaccharides in lysosomes. The cause of the disease is a deficiency of the enzyme α-mannosidase which cleaves α-linked mannose residues from glycoproteins preventing the accumulation of oligosaccharides in normal individuals.

Fabry’s disease is another rare autosomal recessive lysosomal storage disease caused by a deficiency in the lysosomal enzyme α-galactosidase A (GAL-A). A defect in this enzyme results in accumulation of glycosphingolipids substrates, which fatally affect heart, brain and kidneys and in due course bring about organ failure and death (Breunig and Wanner, 2003). ERT with a once in two weeks administration of recombinant human α-galactosidase A (rh-GAL A) produced in cultured human fibroblast (Agalsidase α) and Chinese hamster ovary (CHO) cell lines (Agalsidase β) has shown significant improvement in the symptoms of this disease (Breunig and Wanner, 2003). As the production of recombinant α-galactosidase A in cultured human fibroblast and CHO cell lines are extremely costly, efforts are underway to produce human α-galactosidase A in plant expression systems (Garger et al., 2005).

The production system for most of these enzymes is based on well-established protocols using Chinese hamster ovary (CHO) cell lines. Alternative production options based on plant cell systems, however, came to forefront after a viral infection disrupted the CHO-based production of glucocerebrosidase at Genzyme (Rybicki, 2010). Moreover the cost of recombinant enzyme production based on CHO cell lines is extremely high which questions the widespread affordability of such a production system. Hence, like GCD, research into the,
production of many other human enzymes used in ERT are currently underway using plant cell based systems (table 1.3).

<table>
<thead>
<tr>
<th>Disease</th>
<th>Enzyme</th>
<th>Current system</th>
<th>Plants</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaucher’s disease</td>
<td>Human Glucocerebrosidase</td>
<td>Carrot cell suspension</td>
<td>Carrot cell suspension</td>
<td>Shaalitiel et al., (2007)</td>
</tr>
<tr>
<td>α-mannosidosis</td>
<td>Human α-mannosidase</td>
<td>Chinese Hamster Ovary</td>
<td>Tobacco</td>
<td>De Marchis et al., (2011); Fogh et al., (2003)</td>
</tr>
<tr>
<td>Fabry’s disease</td>
<td>Human α-galactosidase A</td>
<td>Chinese Hamster Ovary and human fibroblast</td>
<td>Carrot cell suspension</td>
<td>www.protalix.com</td>
</tr>
<tr>
<td></td>
<td>N-acetylgalactosamine-4-sulfatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucopolysaccharidosis-I</td>
<td>Human α-iduronidase</td>
<td>Chinese Hamster Overy</td>
<td>Tobacco BY-2 cell suspension</td>
<td>Fu et al., (2009)</td>
</tr>
<tr>
<td>Pompe disease</td>
<td>α-glucosidase</td>
<td>Chinese Hamster Overy</td>
<td>Tobacco</td>
<td>Garger et al., (2005)</td>
</tr>
<tr>
<td>Organophosphate poisoning</td>
<td>Human Acetylchlolinestarase-R</td>
<td>Carrot cell suspension</td>
<td>Nicotiana benthamiana</td>
<td>Woods et al., (2008)</td>
</tr>
<tr>
<td>(Nerve agents)</td>
<td></td>
<td></td>
<td>Carrot cell suspension</td>
<td>www.protalix.com</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Human insulin</td>
<td>Bacteria and yeast</td>
<td>Arabidopsis thaliana</td>
<td>Nykiforuk et al., (2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Safflower</td>
<td>Markley et al., (2006)</td>
</tr>
</tbody>
</table>

1.8 Production systems for ADA

In an attempt to develop a non-antibiotic selection system for transgenic plants and calli, Petolino et al., (1999) demonstrated the expression of a murine ADA cDNA in transgenic maize under the control of the maize ubi-1 promoter. Transformation was executed using a micro-particle bombardment method in embryonic maize calli along with plasmids comprising, gusA and bar gene. Transformants expressed β- glucuronidase (GUS) and accumulated a 41 kDa protein which was immunoprecipitated with ADA-specific polyclonal antibodies and
ADA enzyme activities were measured in transgenic calli and regenerated plants (Petolino et al., 1999). Use of ADA as a selection marker for selecting plant transformants has also been investigated in hot pepper plants (Lim et al., 1999). Recombinant ADA has also been produced in insects, where Medin et al., (1990) successfully expressed a human ADA cDNA in baculovirus-infected Spodoptera frugiperda and Trichoplusia ni insect larvae and obtained ADA enzyme levels up to 70 U mg\(^{-1}\) TSP. There are also several other reports of the production of human ADA in E.coli for the purpose of investigating folding mutations of the enzyme (Santisteban et al., 2003).

1.9 Aims of study

The overall aim of the work presented in this thesis was to effectively express a human ADA cDNA in whole tobacco plants and cell suspensions under the control of various cytosolic and sub-cellular targeting signals. Constructs for cytosolic expression, containing different translational regulation sequences, would be investigated for their ability to increase levels of ADA enzyme activity in transformants. These ADA activities would be compared with activities measured in transformants containing corresponding sub-cellular targeting constructs.
Chapter 2
Materials and methods
2.1 Materials

2.1.1 Bacterial strains and plasmids

Bacterial strains

Escherichia coli: DH5α: F' endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK- mK+), λ- (Hanahan, 1985)

Agrobacterium tumefaciens: AGL1: AGL0 (C58 pTiBo542) recA::bla, T-region deleted Mop (+) Cb(R) [AGL0 is an EHA101 with the T-region deleted, which also deletes the aph gene] (Lazo *et al.*, 1991).

Plasmids

a. pCMV6-ADA

The pCMV6-ADA plasmid was used as a source of the human ADA cDNA (1.5 kbp) and was purchased from Origene™ (Andersson *et al.*, 1989). The full-length ADA cDNA fragment is unidirectionally inserted downstream from a eukaryotic transcriptional promoter in the pCMV6 vector between *EcoRI* and *SalI*.

b. pUBS

The pUBS plasmid is a small, high-copy number *E. coli* cloning vector containing a pUC18 plasmid backbone and Bluscript plasmid KS+ multiple cloning site (Bringloe *et al.*, 1995).
c. pJIT

The pJIT vector carries the 35S cauliflower mosaic virus (CaMV) promoter and terminator along with a small MCS (figure 2.1) (Hellens et al., 2000).

![Figure 2.1: A restriction map of pJIT (www.pgreen.com).](image)

d. pGreenI0029 and pSoup

The pGreenI0029 and pSoup binary vectors are used for Agrobacterium-mediated transformation of plants. The NptI gene of pGreenI0029 conveys resistance to kanamycin, and can be used as a selection marker for plasmid transformation. The pGreenI0029 plasmid contains a MCS incorporated in lacZ' gene which allows blue/white selection. Constructs can be subcloned from pJIT using the EcoRV site.

The pSoup vector contains a virulence origin gene (oriV) which acts in trans for T-DNA incorporation into the plant genome (Hellens et al., 2000).
Figure 2.2: Restriction enzyme maps of Plant binary vectors (a): pGreenI0029 plasmid, (b): pSoup plasmid (Hellens et al., 2000).
2.1.2 Plant material

BY-2 callus

Nicotiana tabacum BY-2 calli obtained from Syngenta, UK were maintained on MS agar medium at 25 °C and subcultured monthly by excising a small part of calli and transferring onto fresh sterile MS Agar medium for callus (section 2.1.4).

Plant material

Tobacco plants (*Nicotiana tabacum*: Samsun Var.) grown *in vitro* were initially obtained from Syngenta, UK. They were propagated in an incubator at 25 °C with supplementary artificial lighting providing photosynthetically-active irradiance of 150 µmol photons m\(^{-2}\) S\(^{-1}\) on a 24 hour photoperiod and sub-cultured monthly by excision of inter-nodal stems with an auxiliary bud and replanting in sterile MS agar medium (section 2.1.4).

BY-2 cell suspension

A small part (2 g) of *Nicotiana tabacum* BY-2 calli initially obtained from Syngenta, UK was cut into small 2 mm\(^2\) pieces in a sterile Petri dish and transferred into 20 ml of fresh sterile culture medium in a 100 ml conical flask, containing MS medium for cell suspension (section 2.1.4). The cultures were shaken at 120 rpm in the dark at 25 °C for 7 days after which the tobacco BY-2 starter suspension was transferred into 100 ml of fresh sterile MS-culture medium in a 250 ml conical flask (section 2.1.4). Tobacco BY-2 cell suspensions were propagated weekly by inoculating 100 ml of modified MS medium with 20 ml of a week-old suspension culture.
2.1.3 Sources of reagents and enzymes

Restriction endonucleases were purchased from Sigma Aldrich (UK), Roche (UK) or New England Biolabs (UK). Bradford reagent, Isopropylthio-(3-D-galactoside (IPTG) and 5-bromo-4-chloro-3-indolyl-(3-D-galactoside (X-gal), Polyvinylpyrrolidone, MS basal medium, total mRNA isolation kit, ampicillin, kanamycin, carbenicillin, tetracycline, cefotaxime, Rifampicin, acetylsyringone, RNase A, proteinase K, O-phenanthroline and rabbit antiserum to ADA were purchased from Sigma Aldrich (UK). Calf intestinal alkaline phosphatase, T4 DNA ligase, restriction endonucleases, DNA molecular weight markers and DIG nucleic acid hybridization kit were obtained from Roche Diagnostics. Primers used in PCR and DNA sequence analysis were obtained from Eurofin MWG operon, Germany. Plasmid miniprep, gel-extraction and total plant DNA isolation kit were obtained from Qiagen, UK. Horseradish peroxidase (HRP) conjugated anti-rabbit IgG was obtained from Novus biological, UK. Adenosine deaminase assay kit was obtained from Bioquant, USA. Sodium hypochlorite solution was obtained from Unilever, UK. Stock reagents, solutions and media were sterilised by autoclaving under one atmospheric pressure at 121 °C for 15 min. Materials unsuitable for autoclaving were sterilised where necessary by passage through Millipore disposable filters (0.4 µm). Most reagents were Analar grade and obtained from BDH unless otherwise indicated.

2.1.4 Solutions and media not described in the text.

TE buffer

10 mM Tris-HCl pH 8.0, 1 mM EDTA.Na$_2$

Solution I

50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA.Na$_2$, 100 µg ml$^{-1}$ RNase A
Solution II

0.2 M NaOH, 1 % (w/v) SDS

Solution III

1.32 M potassium acetate pH 5.0

1X TAE buffer

0.04 M Tris (BDH AnalaR), 1.43 % (v/v) Glacial Acetic Acid (BDH AnalaR), 0.0125 M EDTA (BDH AnalaR)

20x SSC

3.0 M NaCl (Oxoid), 0.3 M Sodium Citrate (Sigma)

10x SSC

1.5 M NaCl (Oxoid), 0.15 M Sodium Citrate (Sigma)

LB broth

1 % (w/v) Bacto Tryptone (Oxoid), 1 % (w/v) NaCl (Oxoid), 0.5 % (w/v) yeast extract (Oxoid) to pH 7.5 with NaOH

LB plates

LB broth, 1.5 % agar (Oxoid)

MS broth

0.44 % (w/v) Murashige and Skoog basal medium (Sigma), 30 % (w/v) Sucrose (Oxoid)
MS for BY-2 cell suspension
MS broth, 0.02 % (w/v) 2,4-Dichlorophenoxy acetic acid (Sigma)

MS Agar for Callus
MS broth, 0.02 % (w/v) 2,4-Dichlorophenoxy acetic acid (Sigma), 0.8 % (w/v) Plant agar (Sigma)

MS Agar for plants
MS broth, 0.8 % (w/v) Plant agar (Sigma)

NBM Agar
MS broth, 0.00001 % (w/v) α-Napthaleneacetic acid (Sigma), 0.0001 % 6-Bezylaminopurine (Sigma) 0.8 % (w/v) Plant agar (Sigma)
2.2 General DNA techniques

2.2.1 Small-scale isolation of plasmid DNA (minipreps)

The method was based on that of Birnboim and Doly (1979). A culture of *E. coli* containing the required plasmid was grown overnight at 37 °C in 10 ml of LB broth containing appropriate antibiotic for the plasmid (100 µg ml⁻¹ ampicillin or 100 µg ml⁻¹ kanamycin or 25 µg ml⁻¹ tetracycline). Aliquots of bacteria (1.5 ml) were pelleted in microfuge tubes by centrifugation for 5 min and re-suspended in 200 µl of solution I by vortexing. Solution II (200 µl) was added and the tube gently inverted several times at room temperature. After 5 min, 200 µl of solution III was added and the tubes were left on ice for 5 min to allow precipitation of *E. coli* chromosomal DNA and denatured protein. The insoluble material was pelleted by centrifugation for 10 min in a microfuge. Protein contaminants dissolved in the supernatant were removed by successive extractions with phenol and chloroform as follows. The supernatant containing plasmids from each tube was transferred into a clean microfuge tube and 0.5 ml phenol/chloroform (1:1 v/v) solution was added. The two layers were mixed vigorously using a vortex for 1 min. The layers were separated by centrifugation in a microfuge for 5 min at top speed. The upper aqueous phase was transferred into clean microfuge tube without disturbing the white precipitate at the interface and the extraction was repeated with fresh phenol/chloroform (1:1 v/v). The aqueous layer was again transferred into a new microfuge tube and an equal volume of chloroform was added to remove any residual phenol. The tube was vortexed and layers were separated by centrifugation in a microfuge for 1 min at top speed. The aqueous phase (about 0.4 ml) was transferred into a clean microfuge tube and DNA was precipitated by addition of one tenth volume of 3 M sodium acetate pH 5.5 and 2.5 volumes of ice-cold absolute ethanol. The contents were mixed thoroughly and incubated on ice for 15 min. The ethanol-precipitated DNA was pelleted in a microfuge at top speed for 10 min and the supernatant discarded and the pellet washed carefully with 0.5 ml
70 % (v/v) ethanol to remove excess sodium acetate. The supernatant was discarded carefully and the DNA pellet air-dried for 10 min to remove the last residue of ethanol. The pellet was finally re-suspended in 50 µl of TE buffer pH 8.0.

2.2.2 Small-scale isolation of plasmid DNA (minipreps) using Qiagen QIAprep Kit

This alkaline lysis miniprep method is partially based on that of Birnboim and Doly (1979) as described in section 2.2.1. A culture of E. coli containing the required plasmid was grown overnight at 37 °C in 10 ml of LB broth containing appropriate antibiotic for the plasmid (100 µg ml\(^{-1}\) ampicillin or 100 µg ml\(^{-1}\) kanamycin or 20 µg ml\(^{-1}\) tetracycline). The plasmid extractions were carried using the Qiagen QIAprep Kit by following the manufacturers’ protocol.

2.2.3 Large-scale isolation of plasmid DNA using QIAGEN Maxi Kit

A culture of E.coli containing the required plasmid was grown overnight in 100 ml of LB broth, containing the appropriate antibiotic for the plasmid (100 µg ml\(^{-1}\) ampicillin or 100 µg ml\(^{-1}\) kanamycin or 20 µg ml\(^{-1}\) tetracycline), in a 250 ml conical flask. The culture was transferred to a 250 ml polypropylene bottle followed by centrifugation in a Sorvall Centrifuge (Thermo Scientific, rotor F14S) for 15 min at 6000g at 4 °C. The plasmid extractions were carried using the Qiagen QIAprep Kit by following the manufacturers’ protocol.
2.2.4 Isolation of total DNA from plant material

Tobacco leaf or callus tissue (2 g) was ground to a fine powder in a mortar and pestle with liquid nitrogen. The ground, frozen plant tissue was added into 4 ml of extraction buffer (100 mM Tris-HCl pH 8.5, 100 mM NaCl, 50 mM EDTA, Na₂ pH 8.0) containing 10 µl of 20 mg ml⁻¹ proteinase K and 40 µl of 1 M O-phenanthroline. The mixture was shaken gently after adding 200 µl of 10% (w/v) SDS prior to 10 min incubation at 60 °C with occasional mixing. In order to precipitate protein and RNA, 1.35 ml of 5 M Potassium acetate was added and tubes incubated on ice for 30 min. The precipitate was pelleted by centrifugation at 3000g in a Sorvall centifuge (Thermo Scientific, rotor SA-300) for 15 min. The supernatant was gently extracted twice by addition of equal volume of phenol/chloroform followed by centrifugation at 6000g. The DNA was precipitated by adding 0.54 volumes of isopropanol followed by centrifugation. The DNA pellet was re-suspended in 1.6 ml of 0.5M NaCl. To purify the DNA further, 400 µl of 50% (w/v) PEG-6000 was added and the DNA left to precipitate on ice for 2 hours. Finally, DNA was pelleted by centrifugation at 6000g and re-suspended in 200-400 µl of TE buffer.

2.2.5 Isolation of total DNA from plant material using Qiagen DNeasy Plant Mini Kit

Tobacco leaf or callus tissue (100 mg) was ground to a fine powder in a microfuge tube using a plastic microfuge grinder pestle and liquid nitrogen. The total DNA extractions were carried out using the Qiagen DNeasy Plant Mini Kit by following the manufacturers’ protocol.
2.2.6 Digestion of plasmid and PCR amplified DNA with restriction endonucleases

For analytical purposes, digestions were carried out with 0.1 µg of DNA and 1 to 10 units of restriction endonuclease in 20 µl reaction volumes for an appropriate duration (usually 1-2 hours) in a reaction buffer and at a temperature recommended by the manufacturer. For preparative scale, digestions were carried out with 2-20 µg of DNA in larger volumes using greater amounts of restriction endonuclease as necessary but taking care not to exceed a glycerol concentration of 5%.

2.2.7 Agarose gel electrophoresis of DNA

Agarose gel electrophoresis was performed to separate double-stranded DNA fragments using 0.7-2 % (w/v) agarose gels depending on the size of the fragment to be analysed. Agarose gels were prepared in perspex trays from agarose in 1 x TAE buffer containing 0.04 M Tris-acetate and 0.00125 M EDTA with 0.005% SafeView DNA stain and were placed horizontally in SCIE-PLAS gel electrophoresis tanks, containing enough TAE buffer with 0.005 % SafeView DNA stain to submerge the gel. Prior to loading, DNA samples (0.1-10 µg of DNA) were mixed with one tenth volume of agarose loading buffer containing 50 % (v/v) glycerol, 0.1 % (w/v) bromophenol blue in TE buffer. Electrophoresis was carried out under a constant voltage (100 V) for 1-3 hours. Using a suitable standard (Roche DNA molecular weight marker III or IV) fragment sizes were determined after visualising with a UV-transilluminator and taking a digital photograph with a Kodak Gel-Logic Imaging System.

2.2.8 Recovery of DNA from agarose gels using Qiagen QIAquick Gel Extraction Kit

The fragment to be isolated was visualized under 366 nm UV light and excised with a sterile, clean sharp scalpel blade from a 1-2 % Safeview-stained agarose gel. The DNA was purified using Qiagen QIAquick Gel Extraction Kit by following the manufacturers’ protocol.
2.2.9 Ligation of DNA restriction fragments with vector DNA

Vector DNA (1 to 5 µg) was digested with suitable restriction endonuclease(s) in a total volume of 50 µl to generate a linearised vector which contains compatible ends with the restriction fragments to be ligated. After an appropriate digestion time (2-3 hours), the digestion was incubated at 75 °C for 10 min in order to inactivate restriction enzymes. If the plasmid cleavage was with a single enzyme, this was followed by addition of 20 units of calf intestinal alkaline phosphatase followed by incubation at 37 °C for 1 hour. Cut, dephosphorylated fragments of vector DNA were isolated from agarose gels by the QIAquick gel extraction method (section 2.2.8). DNA fragment inserts and cut, phosphatase-treated vectors (100-200 ng) were mixed 3:1 molar ratio for sticky ends and 7:1 molar ratio for blunt ends followed by addition of 3 µl of 10x Ligase buffer (50 mM Tris-HCl, 10 mM MgCl₂, 1 mM ATP, 10 mM Dithiothreitol, pH 7.5) and 10-100 units of T4 DNA ligase in 30 µl total reaction volume. The ligation mixture was incubated at 16 °C overnight. Control ligations were also carried out with cut, dephosphorylated vector without the insert DNA. After ligation, 5 µl of ligation mixture was used to transform competent bacterial cells with the ligated product.

2.2.10 Transformation of E. coli with plasmids

E. coli (DH5α) bacteria were transformed with plasmids using a modification of the method of Cohen _et al._ (1972). LB broth (100 ml) in a 250 ml conical flask was inoculated using 0.5 ml of an _E. coli_ overnight culture and incubated at 37 °C for 2-3 hours with continuous shaking at 200 rpm in an orbital shaker to obtain a culture of _E. coli_ with an _A_{600} _of approximately 0.5. The cells were then cooled on ice followed by centrifugation for 5 min in a Hitachi Himac-CP at 2000g. The supernatant was discarded and the pellet re-suspended in 10ml of ice-cold 100 mM MgCl₂. After 15 min on ice the cell suspension was subjected to
centrifugation again and the cells re-suspended in 5 ml of ice-cold 100 mM CaCl₂. Cell suspensions were divided into 50 µl aliquots in sterile microfuge tubes and plasmid DNA (10-20 ng) or ligation mixture (5 µl, section 2.2.9) were incorporated and tubes incubated on ice for 30 min. A heat shock was performed by placing the cells/plasmid mixture in a 42 °C water bath for exactly 2 min. The tubes were placed on ice immediately for 2 min and 1 ml of LB broth added followed by incubation at 37 °C for 1 hour to allow expression of the plasmid-encoded antibiotic-resistance gene. The cells were pelleted by centrifugation in a microfuge for 1 min, re-suspended in 100 µl LB broth and spread on an LB plate containing a suitable antibiotic (100 µg ml⁻¹ ampicillin or 100 µg ml⁻¹ kanamycin), X-gal (100 µg ml⁻¹) and IPTG (50 µg ml⁻¹) as appropriate. Plates were incubated overnight at 37 °C.

2.2.11 Amplification of DNA

DNA was amplified by the polymerase chain reaction (PCR) where each 50 µl reaction mix contained 10 pmol forward primers, 10 pmol reverse primers, 10-500 ng of template DNA, PCR grade water and 25 µl of High fidelity PCR master mix (Roche). Solutions added were mixed thoroughly prior to incubation in the PCR thermal cycler (Primus MWG Biotech) at a denaturation temperature of 94 °C for 60 s, annealing temperature of 56 °C for 30 s and extension temperature of 72 °C for 90 s for a total number of 30 cycles with a final extension time of 10 min.

2.2.12 DNA hybridization techniques

2.2.12.1 Preparation of Southern blots

Total DNA (10 µg) was digested using appropriate restriction endonucleases and incubated overnight at 37 °C in a volume of 400 µl (section 2.2.6). DNA was precipitated with 2.5
volumes of ice-cold ethanol and 0.4 volumes of 5 M sodium acetate pH 5.5 followed by centrifugation for 10 min at top speed in a microfuge. Precipitated DNA was re-suspended in 20 µl TE buffer and subjected to electrophoresis in a 0.7 % agarose gel containing 0.005 % SafeView DNA stain, for 16 hours at a constant 80 V. After electrophoresis a digital photographic record of the gel was taken on a UV transilluminator. Before DNA transfer the gel was soaked in 500 ml of 0.25 M HCl for 15 min, 500 ml of 1.5 M NaCl, 0.5 M NaOH for 30 min and 500 ml of 1.5 M NaCl, 0.5 M Tris-HCl pH 7.2 for 30 min.

2.2.12.2 Blotting
Two sheets of 3MM Whatman paper at about 15 mm larger than the gel to be blotted were folded over a rectangular glass plate and the glass plate placed on two dishes containing 20x SSC so that the end of 3MM paper was immersed in the liquid from either side. The agarose gel to be blotted was placed on top of the 3MM paper and a sheet of Saran wrap with a hole cut to the size of the gel placed around the gel to allow the flow of liquid through the gel only. A sheet of Hybond-N+ (Amersham) 1 mm larger than the gel was placed on top of the gel taking care to remove any trapped air bubbles. Three sheets of 3MM paper at slightly larger than the nylon membrane was wetted in 20x SSC and placed on top of the nylon membrane. A stack of paper towels was placed on top of this along with a glass plate and a 1.5 kg weight. The blotting apparatus was left overnight to allow for capillary transfer of DNA fragments to the nylon membrane. After transfer the nylon membrane was removed carefully and soaked in 10x SSC and exposed to 235 nm UV light for 3 min to cross-link DNA fragments to the membrane. The nylon membrane was rinsed in sterile double distilled water and allowed to air dry.
2.2.12.3 Random primer labelling of DNA with DIG

A Roche kit was used as described in the manufacturers’ protocol. PCR-amplified ADA DNA (1 µg) was mixed with 4 µl of DIG-High Prime solution (Digoxigenin-11-dUTP, Klenow DNA polymerase enzyme) in a 20 µl of reaction mixture prior to overnight incubation at 37 °C. The reaction was stopped by addition of 2 µl of 0.2 M EDTA pH 8.0. Determination of the yield of DIG-labelled DNA was carried out with a series of dilutions as shown in table 2.1. Spots of 1 µl of dilutions were applied to a nylon membrane followed by exposure to 235 nm UV light for 3 min to cross-link DIG-labelled DNA fragments to the membrane. The membrane was blocked by incubation for 30 min with gentle agitation in 10 ml Blocking Solution (1x Salmon sperm solution, 0.1 M Maleic acid, 0.15 M NaCl; pH 7.5) followed by incubation for 30 min in 10 ml of Antibody Solution containing 1:5000 (150 mU ml⁻¹) dilution of Anti-digoxigenin-AP in Blocking Solution. The membrane was washed twice for 15 min in 10 ml of Washing Buffer (0.1 M Maleic acid, 0.15 M NaCl, 0.3 % (v/v) Tween 20; pH 7.5) followed by equilibration for 5 min in 10 ml of Detection Buffer (0.1 M Tris-HCl, 0.1 M NaCl; pH 9.5). Finally, the membrane was incubated in 2 ml of freshly prepared colour substrate solution containing 40 µl of 50x NBT/BCIP stock solution in 2 ml of Detection Buffer in the dark for 30 min. The colourimetric reaction was stopped by washing the membrane with TE buffer when the required intensity of the dots was appeared (Approximately 30 min). Then the optimal concentration of the DNA probe to be used was determined by analysing the dot blot.
Table 2.1: Dilution series of DIG labelled DNA.

<table>
<thead>
<tr>
<th>Tube</th>
<th>Dilution</th>
<th>Final concentration (pg µl⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1:100</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>1:3.3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1:10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1:10</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>1:10</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>1:10</td>
<td>0.03</td>
</tr>
<tr>
<td>8</td>
<td>1:10</td>
<td>0.01</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

2.2.12.4 Hybridization of membrane-bound nucleic acid with DNA probes and immunological detection using Roche DIG High Prime Detection Kit

An appropriate volume of DIG Easy Hyb pre-hybridization solution (0.1 ml cm⁻² membrane) was pre-heated to 47 °C, added to a nucleic acid blot on nylon membrane and pre-hybridized for 30 min with gentle agitation. A DIG-labelled DNA probe in determined optimal dilution (about 25 ng ml⁻¹, section 2.2.12.3) was denatured by boiling for 5 min and rapidly cooled on ice. The denatured DIG-labelled DNA probe was added to pre-heated DIG Easy Hyb solution (0.035 ml cm⁻² membrane) and mixed well. The nylon membrane was transferred to the hybridization solution containing probe and incubated at 47 °C overnight with gentle agitation. After hybridization the membrane was washed twice for 5 min with 2x SSC, 0.1 % SDS at room temperature under constant agitation and twice for 15 min with 0.5x SSC, 0.1 % SDS at 65-68 °C under constant agitation. The membrane was rinsed briefly for 1-5 min in Washing Buffer containing 0.1 M Maleic acid, 0.15 M NaCl and 0.3 % (v/v) Tween 20; pH 7.5. The membrane was then blocked by incubation for 30 min with gentle agitation in 100ml Blocking Solution (1x Salmon sperm solution, 0.1 M Maleic acid, 0.15 M NaCl; pH 7.5)
followed by incubation for 30 min in 20 ml of Antibody solution containing 1:5000 (150 mU ml\(^{-1}\)) dilution of Anti-digoxigenin-AP in Blocking solution. The membrane was washed twice for 15 min in 100 ml of Washing Buffer followed by equilibration for 5 min in 20 ml of Detection Buffer (0.1 M Tris-HCl, 0.1 M NaCl; pH 9.5). Finally, the membrane was incubated in 10ml of freshly prepared colour substrate solution containing 200 µl of 50x NBT/BCIP stock solution in 10ml of Detection Buffer in the dark for 30 min. The colourimetric reaction was stopped by washing the membrane with TE buffer when the required intensity of the bands was achieved. The membrane was placed sandwiched in between two transparency films and photographic record was taken using an Epson image scanner.

2.3 RNA methods

2.3.1 Isolation of total RNA using a Sigma Plant total RNA Kit

Beforehand the glassware was baked overnight at 250 °C and plasticware was thoroughly washed with 0.1 N NaOH/1 mM EDTA then rinsed with diethyl pyrocarbonate (DEPC)-treated water to ensure the elimination of RNases. Prepared solutions were treated with 0.05 % DEPC overnight prior to autoclaving. Plant tissue or calli (2-10 g) were frozen in liquid nitrogen and ground to a fine powder using a mortar and pestle. The ground powder (90-110 mg) was weighed after evaporation of liquid nitrogen in 2 ml microcentrifuge tube pre-chilled in liquid nitrogen. The total RNA extraction was carried out using a Sigma Plant total RNA Kit by following the manufacturers’ protocol. Eluted RNA was stored at -20 °C.
2.3.2 Gel electrophoresis of RNA

Total RNA was quantified beforehand using a NanoDrop 1000 spectrophotometer, following the manufacture’s protocol. RNA loading equivalents were then verified by visualising equal loadings of SafeView-stained ribosomal RNA bands on a separate 1% agarose gel under a UV-transilluminator and taking a photographic record using a Kodak Gel-Logic Imaging System. Equal amounts of total RNA (3000 ng) were denatured by mixing with 15 μl of sample buffer (48 % (v/v) deionised formamide, 40 mM MOPS pH 7.0, 50 mM Na acetate, 5 mM EDTA, 6 % (v/v) formaldehyde, 5 % (v/v) glycerol, 0.002 % (w/v) bromophenol blue). The sample mixture was incubated at 65 °C for 10 min before loading onto a 1.2 % (w/v) agarose gel in 1x running buffer containing 40 mM MOPS pH 7.0, 50 mM Na acetate, 5 mM EDTA, 2% (v/v) formaldehyde and 5 % (v/v) SafeView nucleic acid stain. Electrophoresis, at constant 40 V was carried out for approximately 5 hours in 1 x running buffer.

2.3.3 Preparation and hybridization of northern blots

After gel electrophoresis, the gel was equilibrated by incubating twice in 200 ml of 50 mM sodium phosphate buffer pH 6.4 over a period of 40 min. A capillary blot was set up as described in section 2.2.12.2. After blotting, the nylon membrane was removed carefully and soaked in 10x SSC and exposed to 235 nm UV light for 3 min to cross-link the RNA fragments to the membrane. The nylon membrane was rinsed in sterile double distilled water and allowed to air dry (section 2.2.12.2). Hybridization was carried out as described in section 2.2.12.4.
2.3.4 Blot analysis

TotalLab Quant software was used to analyse northern blots. The area of ADA mRNA hybridizing bands present on blots were compared to the areas of quantified marker bands in order to calculate approximate relative amounts of ADA mRNA in ng. The intensity of RNA bands on a northern blot was presumed to be directly proportional to the amount of RNA (Wright et al., 1997).

2.4 Tobacco plant and tobacco BY-2 cell transformation

DNA constructs were transferred into tobacco BY-2 cell suspension culture and whole plants by Agrobacterium-mediated transformation. Binary vector pGreenI0029 constructs were used in transformations, along with the helper plasmid pSoup (Hellens et al., 2000).

2.4.1 Transfer of a pGreenI0029 plasmid constructs to Agrobacterium by electroporation

Agrobacterium tumefaciens AGL1 was grown in 10 ml LB Broth containing 100 µg ml⁻¹ rifampicin for 24 hours at 28 °C with continuous shaking at 300 rpm in an orbital shaker to obtain a culture of *Agrobacterium* with an A₆₀₀ of approximately 1. The cells were then cooled on ice, followed by centrifugation for 5 min in a Hitachi Himac-CP at 2000g. The supernatant was discarded and the pellet was washed in 10 ml, 5 ml, 0.2 ml and 0.2 ml successive volumes of ice-cold 10 % (w/v) glycerol. Finally, the cells were re-suspended in 0.1 ml of ice-cold 10 % (w/v) glycerol, separated into 40 µl aliquots and frozen in liquid nitrogen and stored for several months at -80 °C. Transformation was set up by addition of 10-100 ng of construct in pGreenI0029 vector along with 10-100 ng of pSoup vector in 40 µl of electro-competent *Agrobacterium* cells in a 0.2 cm cuvette. Electroporation was carried out
in a Bio-Rad electroporation apparatus set at 25 µF, 2.5 kV, 400 Ω followed by dilution of the cells by addition of 950 µl of LB broth prior to incubation for 3 hours at 28 °C with continuous shaking at 300 rpm in an orbital shaker. The cells were pelleted by centrifugation in a microfuge for 1 min, re-suspended in 100 µl of LB broth and spread onto LB plates containing 100 µg ml⁻¹ kanamycin / 20 µg ml⁻¹ tetracycline followed by incubation for 3 days at 28°C. A transformed *Agrobacterium* colony from the plate was inoculated into 10 ml of LB broth containing 100 µg ml⁻¹ kanamycin / 20 µg ml⁻¹ tetracycline and the culture incubated for 3 days at 28 °C with vigorous shaking until the absorption A₆₀₀ had reached 1. The characteristics of the plasmids in the culture were confirmed through plasmid extraction, followed by restriction enzyme digestion and gel electrophoresis (section 2.2.6 and 2.2.7).

2.4.2 Transformation of tobacco BY-2 cell suspensions

The protocol was developed from the method of Rempel and Nelson, (1995). Using 400 µl of a 3-day-old binary vector transformed *Agrobacterium* culture (section 2.4.1), a new LB broth containing appropriate antibiotics (100 µg ml⁻¹ kanamycin / 20 µg ml⁻¹ tetracycline) was inoculated and incubated overnight at 28 °C with vigorous shaking at 200 rpm. The absorbance of an overnight-grown culture was measured at A₆₀₀ and diluted to an A₆₀₀ of 1 in LB broth. For tobacco BY-2 transformation, 5 ml of 4-day-old propagated BY-2 cell suspension culture containing 5µl of 20mM acetosyringone was co-cultured with 25 µl, 50 µl and 100 µl of transformed *Agrobacterium* LB broth culture (A₆₀₀=1.0) successively in 100 mm Petri dishes. The dishes were sealed with parafilm and incubated at 25 °C for two days. Co-cultivated tobacco BY-2 cells were transferred from the plate into a 30 ml plastic sterilin tube and kept undisturbed for about 10 min until the cells had settled to the bottom of the tube. The supernatant was discarded and the cells were washed twice with MS media and twice with MS media containing 500 µg ml⁻¹ carbenicillin / 500 µg ml⁻¹ cefotaxime. Finally, the
cells were re-suspended in 5 ml of MS media containing 500 µg ml\(^{-1}\) carbenicillin /500 µg ml\(^{-1}\) cefotaxime. Washed cells (2 ml) were spread onto 100 mm Petri dishes containing MS agar, 500 µg ml\(^{-1}\) carbenicillin, 500 µg ml\(^{-1}\) cefotaxime and 100 µg ml\(^{-1}\) kanamycin. Cells were spread by gently rocking and swirling the plates and plates were left uncovered in the laminar flow hood for 5-10 min until the liquid was absorbed. Finally, the plates were sealed with Parafilm and incubated at 25 °C in the dark. Calli were visible after 20-30 days and visible calli were transferred onto new MS agar plates containing carbenicillin/cefotaxime/kanamycin and grown for 7-14 days in the dark at 25 °C prior to expression analysis.

2.4.3 Transformation of tobacco and regeneration of whole plants

The following protocol was developed from the method of Horsch *et al.*, (1985). LB broth containing appropriate antibiotics (100 µg ml\(^{-1}\) kanamycin / 20 µg ml\(^{-1}\) tetracycline) was inoculated with a transformed *Agrobacterium* culture (section 2.4.1) and incubated overnight at 28 °C with vigorous shaking at 200 rpm to obtain a culture of *Agrobacterium* with an \(A_{600}\) of approximately 1. *Agrobacterium* cells were pelleted by centrifugation at 3000 rpm for 15 min and re-suspended in MS medium, pH 5.9 and absorption was measured at \(A_{600}\) and diluted to an \(A_{600}\) of 0.6 by diluting in MS medium. The *Agrobacterium* suspensions (25 ml) were dispensed into 100 mm Petri dishes.

Healthy and fully-extended leaves were dissected from micro-propagated tobacco plant cultures and sterilised by submerging in 30% sodium hypochlorite solution for 1-2 min. The mid-rib and the outer leaf margin were removed and cut into about 1 cm x 1 cm squares with a sterile scalpel. These were transferred directly to the *Agrobacterium* suspension in a Petri dish abaxial surface lowermost and shaken gently to ensure the full submersion of the cut
edges of the leaves. These explants were maintained in the Agrobacterium suspension at room temperature for 20 min, then removed and dabbed on sterile filter paper to remove excess suspension. Explants were transferred to NBM agar, with the abaxial surface of each explant in contact with the medium. Plates were sealed with Parafilm and incubated in a lit (80 µmol photons m\(^{-2}\) s\(^{-1}\)) incubator at 25 °C, 16 hour photoperiod for 3 days. After which the explants were carefully transferred onto NBM agar medium containing 100 µg ml\(^{-1}\) kanamycin, 500 µg ml\(^{-1}\) cefotaxime and 500 µg ml\(^{-1}\) carbenicillin. Shoots started to regenerate from the callus forming on leaf explants after 4-6 weeks. The shoots were cut with flame-sterilised scissors and transferred onto Elongation Medium (MS medium, 30 g L\(^{-1}\) sucrose, 8 g L\(^{-1}\) plant agar, 100 µg ml\(^{-1}\) kanamycin, 500 µg ml\(^{-1}\) cefotaxime, 500 µg ml\(^{-1}\) carbenicillin, pH 5.9). Readily rooted stable transgenic plants were formed after 3-4 weeks, whilst untransformed shoots bleached and died.

2.5 Protein methods

2.5.1 Isolation of total soluble proteins from plant material

Tobacco leaf or calli tissues (0.1-1 g) were ground to a fine powder in a microfuge tube using a microfuge tube grinder in liquid nitrogen and homogenised in 400 µl of chilled extraction buffer containing 50 mM potassium phosphate pH 7.5, supplemented with 37.50 g L\(^{-1}\) polyvinylpyrrolidone 40,000MW. The homogenate was then subjected to centrifugation at 10,000g for 10 min at 4 °C to remove plant cell debris.

2.5.2 Enzymatic assay for adenosine deaminase

An Adenosine deaminase assay kit (Bioquant, USA) was used to determine levels of ADA in transformed plant and cell extracts (section 2.5.1). The assay is based on the enzymatic conversion of adenosine to inosine by ADA followed by the conversion of inosine to
hypoxanthine by purine nucleoside phosphorylase (PNP). Furthermore, xanthine oxidase (XOD) catalyzes the conversion of hypoxanthine to uric acid and hydrogen peroxide. In the presence of peroxidase (POD), hydrogen peroxide reacts with N-Ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (EHSPT) and 4-aminoantipyrine (4-AA) to generate a quinine dye which can be detected in a kinetic manner by measuring the change in absorbance at 550 nm on a Thermo Multiskan plate reader (Thermo, USA).

Principle:

\[
\begin{align*}
\text{Adenosine} + H_2O & \xrightarrow{\text{ADA}} \text{Inosine} + NH_3 \\
\text{Inosine} + \text{Pi} & \xrightarrow{\text{PNP}} \text{Hypoxanthine} + \text{Ribose 1'-phosphate} \\
\text{Hypoxanthine} + 2H_2O + 2O_2 & \xrightarrow{\text{XOD}} \text{Uric acid} + 2H_2O_2 \\
2H_2O_2 + 4 \cdot \text{AA} + \text{EHSPT} & \xrightarrow{\text{POD}} 4H_2O_2 + \text{Quinone dye (λ max 550nm)}
\end{align*}
\]

Total soluble proteins (TSP) were isolated from plant tissues or calli using 400 µl of chilled extraction buffer (section 2.5.1). From the soluble protein solution, 5 µl was removed and mixed with 180 µl of R1 solution (50 mM Tris.HCl pH 8.0, 2 mM 4-AA, 0.1 U ml\(^{-1}\) PNP, 0.2 U ml\(^{-1}\) XOD, 0.6 U ml\(^{-1}\) Peroxidase) and incubated for 3 min at 37 °C. R2 solution (90 µl) containing 50 mM Tris.HCl pH 4.0, 10 mM adenosine and 2 mM EHSPT was added and incubated for 5 min at 37 °C. The absorbance was monitored at 550 nm in a Thermo Multiskan plate reader (Thermo, USA) for 3 min with 1 min intervals to obtain absorbance min\(^{-1}\) values. Assays were performed in triplicate. The average rate of the absorbance change (ΔA min\(^{-1}\)) was calculated from 3 separate assays per transformants and ADA activity in units per litre protein extract was calculated using the formula below. Similarly, 5 µl of calf
intestinal ADA (Sigma) was analysed as a control. For plants ADA activities from young, medium and old leaf samples were combined and assayed.

$$ADA \text{ (Units L}^{-1}\text{)} = \frac{\Delta A \text{ min}^{-1} \times Tv}{\varepsilon \times Sv \times L} = \Delta A \text{ min}^{-1} \times 1708$$

- **Tv** = Total reaction volume (ml) = 0.275 ml
- **Sv** = Sample volume (ml) = 0.005 ml
- **ε** = μmolar extinction coefficient of quinone dye ($ε = 32.2 \times 10^{-3} \mu M^{-1} cm^{-1}$)
- **L** = Cuvette light path length (1.0 cm)

2.5.3 Protein Assay

Determination of the amount of total soluble protein from protein extracts (section 2.5.1) were performed using a method based on that of Bradford, (1979). Bovine serum albumin (BSA) 1 mg ml$^{-1}$ was prepared in distilled water and diluted to 0.1 mg ml$^{-1}$ in protein extraction buffer (section 2.5.1). Diluted BSA (100 μg ml$^{-1}$), distilled water and 25 μl of Bradford reagent (Sigma) was mixed as shown in the table 2.2 in 96 well microtitre plates and the absorbance measured at 590 nm using a Thermo Multiskan plate reader (Thermo, USA). Assays were performed in triplicate and a standard curve was plotted. The protein extract from transformed plants or calli was diluted 10 fold and 2 μl of diluted sample was added to 98 μl of distilled water prior to addition of 25 μl Bradford reagent. Absorbance at 590 nm was measured and the amount of total soluble protein determined from the standard curve.
Table 2.2: Protein assay.

<table>
<thead>
<tr>
<th>BSA 100µg ml⁻¹ (µl)</th>
<th>H₂O (µl)</th>
<th>Bradford (µl)</th>
<th>total µg BSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>25</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>25</td>
<td>0.3</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
<td>25</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>25</td>
<td>0.9</td>
</tr>
<tr>
<td>12</td>
<td>88</td>
<td>25</td>
<td>1.2</td>
</tr>
</tbody>
</table>

2.5.4 SDS-polyacrylamide gel electrophoresis of proteins

The method used was that of Laemmli, (1970) using the Bio-Rad Miniprotein II apparatus. A 12 % (w/v) polyacrylamide gel was prepared in a total volume of 10 ml by adding 20 µl of TEMED and 100 µl of 10 % (w/v) ammonium persulphate to a solution containing 12 % (w/v) acrylamide, 0.4 % (w/v) NN'-methylenebisacrylamide, 0.375 M Tris-HCl pH 8.8 and 0.1 % (w/v) SDS. Also a stacking gel was prepared in a total volume of 5 ml by adding 10 µl of TEMED and 50 µl of 10 % (w/v) ammonium persulphate to a solution containing 5 % (w/v) acrylamide, 0.133 % (w/v) NN'-methylenebisacrylamide, 0.125 M Tris-HCl pH 6.8 and 0.1 % (w/v) SDS. The gel was prepared in a Bio-Rad gel casting unit using 5 ml of 12 % polyacrylamide gel mixture and 2 ml of 5 % polyacrylamide stacking gel mixture. Sample proteins were diluted at 1:4 ratios with sample buffer containing 0.625 mM HCl, 9.5 % (w/v) glycerol, 2 % (w/v) SDS, 5 % (v/v) 2-β-mercaptoethanol and 0.00125 % (w/v) Bromophenol blue. Proteins containing samples and pre-stained protein standards were separated by electrophoresis through the polyacrylamide gel using a running buffer containing 0.2 M glycine, 0.1 % (w/v) SDS and 0.025 M Tris pH 8.3 at constant voltage (200 V) for one hour.
2.5.5 Western blotting

Transfer of proteins from polyacrylamide gels to nitrocellulose was performed by a method based on that of Polvino et al., (1983). The gel was placed on a sheet of Hybond-C (Amersham) nitrocellulose membrane and sandwiched between two sheets of Whatmann 3MM paper soaked in transfer buffer (25 mM Tris base, 192 mM glycine, 20 % (v/v) methanol, 0.1 % (w/v) SDS). The sandwich was then placed on the Mylar mask in a SemiPhore semi-dry transfer unit and two additional pieces of buffer-soaked Whatmann 3MM paper placed on the stack. The transfer of proteins was performed under a constant current of 100 mA for 30 min. After transfer the membrane was immersed in 5% Skimmed milk-TBS (20 mM Tris-HCl pH 7.5, 0.5 M NaCl) on a plastic tray and incubated overnight at 25 °C, followed by two washes in TBST (20 mM Tris-HCl pH 7.5, 0.5 M NaCl, 0.05 % (v/v) Tween-20). The membrane was incubated for 1 hour with continuous rocking with TBST containing rabbit anti-ADA antibodies at an optimal dilution of 1:3000 (optimal dilution was determined by the dot blot of a series of antibody dilutions). The membrane was then washed twice in TBST and incubated for 1 hour with continuous rocking in TBST containing anti-rabbit IgG conjugated to horseradish peroxidase. Incubation was followed by two washes in TBST prior to incubation for 5 min in 10ml Developing Buffer containing 4 mg ml⁻¹ luminol in TBS pH 7.5, 0.2 mg ml⁻¹ 4-iodophenol and 25 μl of 30 % hydrogen peroxide (H₂O₂). The membrane was sandwiched between transparency film and hybridizing bands were visualised in Typhoon scanner (Amersham). TotalLab Quant software was used to analyse western blots. The area of hybridizing bands present on blots were compared to the areas of quantified control ADA bands in order to calculate approximate relative amounts of recombinant ADA in micrograms.
2.5.6 Thrombin cleavage of ADA-hydroxyproline fusion.

Tobacco BY-2 calli, cell suspension extract or cell suspension media (400 µl) of ADA-hydroxyproline fusion protein was mixed with 20 Units of thrombin prior to incubation at 22 °C for 16 hours. A control ADA lacking hydroxyproline fusion was also incubated.

2.6 Statistical analysis

Expression levels of the same transgene in independent transformants do not assume a normal distribution. Therefore, Mann-Whitney U test, a distribution-free statistical test based on median values was used to evaluate significant difference between any two gene-constructs. Any two gene constructs being compared were combined and ranked by ascending expression levels. U-values were calculated using the following formulae:

\[
U = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1
\]

\[
U = n_1 n_2 - \frac{n_2 (n_2 + 1)}{2} - R_2
\]

Where R_1 is the sum of the ranks assigned to ADA specific-activities from construct-1, whose sample size is n_1 and R_2 is the sum of ranks assigned to ADA specific-activities from construct-2, whose sample size is n_2. The U values were compared with a critical region table indicating the level of significance at 5%.
Chapter 3
Design and generation of ADA gene expression constructs in pGREEN for tobacco transformation
3.1 Overview

Plants possess an efficient eukaryote protein production mechanism, and with presently accessible gene expression systems, plants can readily produce enormous amounts of recombinant protein (Obembe et al., 2011). Tobacco cells and whole plants are frequently used in foreign gene expression owing to the characteristics of simple, well established transformation and propagation protocols. The recombinant protein gene construct design is an important factor determining the foreign protein yield. For example, choice of promoter affects the yield of recombinant products by influencing the transcription rate. Hence, the choice of promoter should be evaluated on an empirical basis. Since the isolation in the early 1980’s by Chua and collaborators at the Rockefeller University, the CaMV 35S promoter is the most extensively used promoter in plant expression systems expressing recombinant proteins at high-levels (Odell et al., 1985; Sanders et al., 1987; Gutierrez-Ortega et al., 2005). The CaMV 35S promoter sequence has been modified by tandem duplication of a 250 bp upstream sequence which in turn enhances the efficiency of expression by approximately 10-fold (Kay et al., 1987). However, subsequently the use of strong promoters has often been associated with posttranscriptional gene silencing and their use is now limited (Que et al., 1997; Schubert et al., 2004). Since first use in the 1980’s, the CaMV 35S promoter has been used to produce many proteins of therapeutic and industrial importance, such as Cholera toxin B, SARS virus glycoprotein S, avidin and adiponectin (Jani et al., 2002; Kang et al., 2004c; Li et al., 2006b; Murray et al., 2002). The CaMV 35S promoter has the ability to carry out continuous expression of recombinant proteins and is not greatly influenced by environmental conditions or tissue types, hence it is the promoter of choice in many plant expression systems (Ho et al., 1999; Huang and McDonald, 2009).
Translational regulation is also an important factor in eukaryotic gene expression. Choice of strong translational enhancer/regulation sequences is equally as important as the choice of an efficient promoter when seeking to increase the yield of recombinant products. Most of the regulation in translation occurs at the initiation steps in the 5’-untranslated region (mRNA 5’ leader sequence). There are two very important mechanisms by which translational initiation occurs in eukaryotic cells. They are (i) cap-dependent initiation and (ii) internal ribosome entry (Pickering and Willis, 2005). RNA plant viruses, on the other hand, exhibit several different mechanisms by which they regulate gene expression at the translational level. Tobacco mosaic virus (TMV) UTRs represent the most widely used translational regulation sequences for generate high yield constructs in plants (Schmitz et al., 1996).

There are several other plant translational regulator sequences used to make foreign gene constructs, one of which is the RUBISCO small subunit 5’ UTR. Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RUBISCO) is an enzyme which catalyzes the primary step in carbon fixation in plants (Mazur and Chui, 1985). It is a multimeric enzyme composed of eight large and eight small subunits and is the most abundant protein present in plants. Patel et al., (2004) demonstrated that the untranslated region from C4 Amaranth RUBISCO small subunit1 mRNAs confer translational enhancement which leads to increased expression of foreign proteins. Patel et al., (2006) further demonstrated that incorporation of untranslated regions of Flaveria bidentis RUBISCO small subunit1 also enhanced translation of associated sequences.

Although, the foreign protein expression in plants can be enhanced by the use of various promoter and UTR sequences, in order to achieve commercial success of plant-based production systems, improvements of foreign protein accumulation is also pivotal (Doran, 2004). Once produced most foreign proteins expressed in heterologous systems undergo
constant degradation due to processes such as proteolysis and irreversible surface adsorption (Doran, 2006). Hence, it is of much importance to take steps in order to reduce foreign protein loss by these processes, in turn leads to accumulation. Conrad and Fielder, (1998) showed that directing produced proteins to the endoplasmic reticulum (ER) effectively reduces the foreign protein degradation and loss. Wirth et al., (2004) showed that recombinant human epidermal growth factor directed to ER increased the yield by a 10^4-fold as compared to cytosolic counterpart. The plant cell ER contains less protease activity and also contains important chaperones (Protein binding motifs BiP) which give a protective environment to foreign proteins (Nuttal et al., 2002). Hence, the use of signal peptides (KDEL or HDEL) in order to retain recombinant proteins in the ER can also be used to reduce protein degradation and direct correct folding of the polypeptide chain.

Certain proteins which contain an N-terminal signal peptide sequence undergo secretion into the apoplastic space. Signal sequences such as tobacco pathogenesis related protein (PR1a) when used in conjunction with recombinant proteins can direct foreign proteins into the apoplast (Pen et al., 1993a). Ziegler et al., (2000) effectively produced the catalytic domain of a bacterial thermostable endo-1, 4-β-D-glucanase in the apoplast of Arabidopsis leaves and BY2 cell suspensions. Incorporation of a PR1a signal peptide at the N-terminus increased the accumulation level by up to 26% of TSP (Ziegler et al., 2000). Another apoplast directing signal is found at the N-terminus of plant extensins which are well-characterized hydroxyproline-rich glycoproteins forming a major component of the cell wall (Showalter, 1993). Incorporation of an extensin signal peptide sequence at the N-terminal of the recombinant protein directs secretion into the apoplast. For example, Francisco et al., (1997) expressed Bryodin 1, a potent ribosome-inactivating protein, as a soluble recombinant protein in BY-2 cell cultures, using the extensin signal peptide sequence to secrete the protein into
the culture medium. Purified Bryodin 1 yield was 30 mg L$^{-1}$ of culture and showed identical inhibitory activity to native Bryodin 1 isolated from the roots of *Bryonia dioica*.

Hydroxyproline (Hyp)-rich glycoproteins (HRGPs) are structural glycoproteins distinctively associated with the plant cell wall (Lamport, 1977). HRGP motifs are evolutionary conserved and extremely O-glycosylated through the Hydroxyproline (Hyp) residues. Shpak, (2001) reported that two types of glycomodules are resulted by unique post-translational modifications, involving Hyp motifs. One of which is formed by the addition of short unbranched arabinooligosaccharides to a contiguous Hyp residues, whereas the other is formed by the addition of branched arabinogalactan polysaccharides to clustered non-contiguous Hyp residues (Shpak, 2001). This includes repeats of X-Hyp-X-Hyp motifs where X is frequently Ser or Ala and leads to an increase in molecular weight of the protein (Kieliszewski and Lamport, 1994). Chimeric constructs of foreign genes linked to these HRGP motifs at the C-terminal have shown high-level expression of linked therapeutic proteins. For example HRGPs linked to interferon alpha2 (IFNa2) direct extensive Hyp O-glycosylation leading to addition of arabinooligosaccharides resulting in an arabinogalactan protein (AGP) which when, targeted for secretion into the apoplast, increased the yield of secreted recombinant protein by 350–1400-fold as compared to a non-glycosylated IFNa2 control (Xu, 2008). Targeting recombinant proteins into the apoplast through sub-cellular targeting protects recombinant proteins from proteolytic degradation and accumulation.

The above strategies for stabilizing foreign gene mRNAs and targeting recombinant products have been employed in designing and generating various ADA constructs in order to increase the yield of recombinant human ADA in tobacco whole plants and cell suspensions.
3.2 Constructs designed to increase cytosolic levels of human ADA

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human ADA cDNA</td>
<td>pCDNA_ADA</td>
</tr>
<tr>
<td>Minimal 5’ UTR</td>
<td>pΔ5’UTR_ADA</td>
</tr>
<tr>
<td>TMV Omega 5’ UTR</td>
<td>p5’Omega_ADA</td>
</tr>
<tr>
<td>TMV Omega 5’_3’ UTR</td>
<td>p5’_3’ Omega_ADA</td>
</tr>
<tr>
<td>RUBISCO SS 5’ UTR</td>
<td>pSS 5’UTR_ADA</td>
</tr>
</tbody>
</table>

3.2.1 Human ADA cDNA (pCDNA_ADA) construct design

In order to generate an ADA cDNA insert with restriction enzyme sites for insertion into the 35S CaMV cassette of pJIT a three step cloning procedure was necessary. Firstly, the ADA cDNA clone (figure 3.1) provided in pCMV6 was isolated from the vector by NotI digestion. The NotI digested and gel-purified ADA cDNA was inserted into NotI digested pUBS and the resulting construct was transformed into E.coli and transformants selected. The recombinant plasmid pUBSADA was extracted from one transformant and digested with XbaI to produce an insert with XbaI ends. The gel- extracted ADA cDNA was ligated into XbaI digested pJIT in between the 35S CaMV promoter and terminator cassette. The insertion of ADA cDNA into pJIT was confirmed by restriction enzyme mapping using XbaI to release ADA cDNA from pJIT (figure 3.2b). Restriction enzyme digestion of plasmid minipreps of pJITADA digests, (lanes 2 to 9 of figure 3.2b) generated two fragments at 1.4 kbp and 2.9 kbp which confirmed the insertion of ADA (1.4 kbp) into pJIT (2.9 kbp).
Finally, the construct in pJIT 35S cassette was inserted into the pGreenI0029 T-region by digestion of pJITADA and pGreenI0029 with EcoRV. *E.coli* DH5α was transformed with ligated pGreenI0029-35SADA and transformants selected. Putative transformants containing pGreenI0029-35SADA plasmid were isolated and the insertion of 35SADAcDNA into pGreenI0029 was confirmed by restriction enzyme mapping using EcoRV to release 35SADA cDNA from pGreen (figure 3.3b). Restriction enzyme digestion of isolated pGreenI0029-35SADA with EcoRV generated two fragments in all digests (figure 3.3b) at 2.1 kbp and 4.6 kbp. Hence, confirming the insertion of 35SADA (2.1 kbp) into pGreenI0029 (4.6 kbp).

Electrocompetent *Agrobacterium tumefaciens* AGL1 were transformed with pGreenI0029-35SADA along with the helper plasmid pSoup (section 2.4.1). Transformants were selected and transformation was confirmed by remapping of plasmid isolates from *Agrobacterium* transformants using *SalI*. (figure 3.4) *SalI* restriction enzyme digestion of plasmids isolated from transformed *Agrobacterium* clones generated two linearized vector fragments in all digests shown in figure 3.4. DNA fragments running at approximately 6.1 kbp confirmed the presence of pGreenI0029-35SADA plasmid whereas fragments running at approximately 9.7 kbp confirmed the presence of pSoup. Tobacco BY-2 cell suspensions and whole plants were transformed with the pGreenI0029-35SADA construct using *Agrobacterium* mediated transformation (section 2.4.2 and section 2.4.3) and transformants were selected after 5-6 weeks of transformation and ADA activity measured (section 2.5.2).
Figure 3.1: Human ADA cDNA, DNA sequence in blue, depicts the open reading frame of ADA. Sequence in green before ATG start codon depicts 129 bp 5’ UTR region whereas sequence in red depicts 345 bp 3’ UTR (Wiginton et al., 1983).
Figure 3.2: (a) A human cDNA clone for ADA inserted into pJIT XbaI sites. Downstream of the 35S CaMV promoter (b) SafeView™ stained 1% agarose gel, lanes 1 to 10 XbaI digested pJITADA; lane 11: Roche molecular weight marker IV.
Figure 3.3: (a) Human ADA cDNA including 35S CaMV promoter and terminator inserted into the EcoRV site of pGreenI0029 (b) SafeView™ stained 1% agarose gel, lanes 1 to 10: EcoRV digested pGreenI002935SADA; lane 11: Roche DNA molecular weight marker IV.
3.2.2 Minimal 5’ UTR (p∆ 5’ UTR_ADA) construct design

The minimal 5’ UTR, containing 21 bp was engineered between the 35S CaMV promoter and the ADA ATG initiation codon (figure 3.5). To make this construct, ADA was PCR amplified from pCMV6-ADA cDNA using a forward primer (5’GAAA[TCTAGA]AAAATGGCCCAGACG3’) and reverse primer (5’CTTT[GAATTC]TCAAGGGTTCTGCCCT3’). Primers were designed to contain an XbaI (TCTAGA) restriction site, an ATG initiation codon followed by the next 9 nucleotides of the ADA ORF cDNA sequence in the forward primer. The reverse primer included an EcoRI (GAATTC) restriction site, a TCA complimentary stop codon and 13 nucleotides from the 5’ end of the complementary ORF of ADA.
PCR-amplified ADA (PCRADA) was digested with XbaI/EcoRI, gel-extracted and inserted into XbaI/EcoRI digested pJIT in between 35S promoter and terminator cassette (figure 3.6). The resulting construct was transformed into E.coli and transformants were selected. Several ampicillin-resistant colonies were chosen and pJIT-Δ 5’ UTR-PCRADA was extracted. The insertion of PCR-ADA into pJIT was confirmed by restriction enzyme mapping using XbaI and EcoRI to release PCR-ADA from pJIT.

Finally, the construct Δ 5’ UTR-PCRADA in pJIT, along with the 35S cassette (figure 3.6) was inserted into pGreenI0029 T-region by digestion of pJIT-Δ 5’ UTR-PCRADA and pGreenI0029 with EcoRV, followed by gel- extraction and ligation of vector and insert DNA. E.coli DH5α was transformed with the ligated pGreenI0029-35S-Δ 5’ UTR-PCRADA and transformants were selected. The pGreenI0029-35S-Δ 5’ UTR-PCRADA plasmid was isolated and the insertion of 35S-Δ 5’ UTR-PCRADA into pGreenI0029 was confirmed by restriction enzyme mapping using EcoRV to release 35S-Δ 5’ UTR-PCRADA from pGreen.

Electrocompetent Agrobacterium tumefaciens AGL1 were transformed with pGreenI0029-35S-Δ 5’ UTR-PCRADA along with the helper plasmid pSoup as described in section 2.4.1.
Transformants were selected and transformation was confirmed by mapping of plasmid isolates from *Agrobacterium* transformants using *SalI*.

![Diagram](image)

Figure 3.6: Schematic diagram of the gene construct CaMV promoter- pΔ 5’ UTR_ADA.

3.2.3 TMV Omega 5’ UTR (p5’ Omega_ADA) construct design

A synthetically synthesized 5’ TMV Omega (Ω) sequence (Gallie, 2002) (MWG-Biotech AG) (Figure 3.7) containing 80 bp and *HindIII/XbaI* restriction sites was inserted upstream (into *HindIII* and *XbaI* sites) of the ADA ORF in pΔ 5’ UTR_ADA construct (figure 3.6). The resulting construct was transformed into *E.coli* and transformants were selected. Several ampicillin-resistant colonies were chosen and putative pJIT-5’ Ω-PCRADA transformants were extracted for plasmid DNA. The insertion of 5’ Ω into pΔ 5’ UTR_ADA was confirmed by restriction enzyme mapping using *HindIII* and *EcoRI* to release 5’ Ω-PCRADA from pJIT, and further confirmed using DNA sequence analysis.

![Sequence](image)

Figure 3.7: Tobacco Mosaic Virus (TMV) 5’ Omega UTR DNA sequence with HindIII and XbaI restriction enzyme sites (Gallie *et al.*, 1987).
Figure 3.8: A PCR-amplified ADA cDNA and 5’Ω TMV UTR DNA inserted into pJIT, downstream of the 35S CaMV promoter (p5’ Omega_ADA construct).

Finally, the construct p5’ Omega_ADA in pJIT, along with the 35S cassette (figure 3.8) was inserted into pGreenI0029 T-region by digestion of p5’ Omega_ADA and pGreenI0029 with EcoRV, followed by gel- extraction and ligation of vector and insert DNA. E.coli DH5α was transformed with the ligated pGreenI0029-35S-5’Ω-PCRADA and transformants were selected. The pGreenI0029-35S-5’Ω-PCRADA plasmid was isolated and the insertion of 35S-5’Ω-PCRADA into pGreenI0029 was confirmed by restriction enzyme mapping using EcoRV to release 35S-5’Ω-PCRADA from pGreen.

Electrocompetent Agrobacterium tumefaciens AGL1 were transformed with pGreenI0029-35S-5’Ω-PCRADA along with the helper plasmid pSoup. Transformants were selected and transformation was confirmed by remapping of plasmid isolates from Agrobacterium transformants using Sall restriction enzyme.
3.2.4 TMV Omega 5’ and 3’ UTR (p5’_3’ Omega_ADA) construct design

A synthesized 3’ TMV Omega (Ω) sequence (Gallie, 2002) (from MWG-Biotech AG) (figure 3.8) containing 204 bp and EcoRI restriction sites was inserted downstream (into EcoRI site) of p5’Omega_ADA (figure 3.10). The resulting construct was transformed into E.coli and transformants were selected. Several ampicillin-resistant colonies were chosen and putative p5’_3’ Omega_ADA plasmids were extracted. The insertion of 3’ UTR into p 5’Omega_ADA was confirmed by restriction enzyme mapping using EcoRI to release 5’ Ω-PCRADA-3’UTR from pJIT and further confirmed using DNA sequence analysis.

Figure 3.9: Tobacco Mosaic Virus (TMV) 3’ un-translated region DNA sequence (Gallie and Walbot, 1990).

Figure 3.10: TMV Ω 3’UTR inserted into EcoRI site of p5’ Omega_ADA construct.

Finally, the construct p5’_3’Omega_ADA, along with the 35S cassette was inserted into pGreenI0029 T-region by digestion of p5’_3’Omega_ADA construct in pJIT and pGreenI0029 with EcoRV, followed by gel-extraction and ligation of vector and insert DNA. E.coli DH5α
was transformed with the ligated pGreenI0029-p5’_3’Omega_ADA construct and the transformants were selected. The pGreenI0029 plasmid containing p5’_3’Omega_ADA construct was isolated and the insertion of p5’_3’Omega_ADA construct into pGreenI0029 was confirmed by restriction enzyme mapping using EcoRV to release 35S-5’Ω-PCRADA from pGreen.

Electrocompetent Agrobacterium tumefaciens AGL1 were transformed with pGreenI0029-3SS5’_3’Ω-PCRADA along with the helper plasmid pSoup. Transformants were selected and transformation was confirmed by remapping of plasmid isolates from Agrobacterium transformants using SalI restriction enzyme.

3.2.5 RUBISCO small subunit 5’ UTR (pSS 5’UTR_ADA) construct design

To engineer pSS 5’UTR_ADA a synthetically synthesized 5’ RUBISCO small subunit DNA sequence (Mazur and Chui, 1985) (figure 3.11) containing 128 bp and HindIII/XbaI restriction sites was inserted up-stream of the PCR amplified ADA in p∆5’UTR_ADA (figure 3.12). The resulting construct was transformed into E.coli and transformants were selected. Several ampicillin-resistant colonies were chosen and putative pSS 5’UTR_ADA transformants were extracted. The insertion of 5’ RUBISCO small subunit sequence into p∆5’UTR_ADA was confirmed by restriction enzyme mapping using HindIII and EcoRI to release 5’ SS UTR-PCRADA from pJIT and further confirmed using DNA sequence analysis.

![Figure 3.11: 5' Tobacco RUBISCO small subunit 5' UTR DNA sequence (Mazur and Chui, 1985).](image)
Figure 3.12: A RUBISCO small subunit 5'UTR inserted into pΔ5'UTR_ADA construct (pSS 5'UTR_ADA construct).

Finally, the construct pSS 5’UTR_ADA, along with the 35S cassette (figure 3.12) was inserted into pGreenI0029 T-region by digestion of pSS 5’UTR_ADA construct in pJIT and pGreenI0029 with EcoRV, followed by gel-extraction and ligation of vector and insert DNA. *E.coli* DH5α was transformed with the ligated pGreenI0029- pSS 5’UTR_ADA construct and the transformants were selected. The pGreenI0029 plasmid containing pSS 5’UTR_ADA construct was isolated and the insertion of pSS 5’UTR_ADA construct into pGreenI0029 was confirmed by restriction enzyme mapping using EcoRV to release 35S-5’SS UTR-PCRADA from pGreen.

Electrocompetent *Agrobacterium tumefaciens* AGL1 were transformed with pGreenI0029-35S-5’SS UTR-PCRADA along with the helper plasmid pSoup. Transformants were selected and transformation confirmed by re-mapping of plasmid isolates from *Agrobacterium* transformants using *SalI*.
3.3 Constructs designed to increase levels of human ADA in tobacco by directing recombinant protein to the apoplast

Table 3.2: Subcellular targeting constructs.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMV Omega 5’UTR PR1a</td>
<td>p5’Omega-PR1a_ADA</td>
</tr>
<tr>
<td>TMV Omega 5’UTR Extensin</td>
<td>p5’Omega-Extensin_ADA</td>
</tr>
<tr>
<td>3’Hydroxyproline</td>
<td>p5’Omega-Extensin_ADA-3’Hydroxyproline</td>
</tr>
</tbody>
</table>

3.3.1 TMV Omega 5’UTR PR1a and TMV Omega 5’UTR Extensin (p5’Omega-PR1a_ADA and p5’Omega-Extensin_ADA) construct design

A PR1a-ADA transcriptional fusion sequence, including 87 bp coding for the N-terminal portion of PR1a (Ziegler et al., 2000) and the first 20 5’-terminal codons of the ADA ORF was synthesized (figure 3.13). PR1a-ADA was designed to contain from 5’ end an XbaI site, an ATG initiation codon, 87 bp of PR1a sequence and the first 60 bp of 5’ ADA ORF sequence up to an internal BamHI site in the ADA ORF (figure 3.13). To insert the PR1a sequence 5’ to the ADA ORF, the PR1a-ADA fusion sequence was digested with XbaI/BamHI, gel-extracted and inserted into XbaI/BamHI-digested p5’Omega_ADA in pJIT (figure 3.15a). E.coli DH5α was transformed with p5’Omega-PR1a_ADA and transformants were selected. Several ampicillin-resistant colonies were chosen and putative p5’Omega-PR1a_ADA plasmids were extracted. The insertion of PR1a-ADA fusion into p5’Omega_ADA was confirmed by DNA sequence analysis and restriction enzyme mapping using HindIII and EcoRI to release 5’ Omega-PR1a-PCRADA from pJIT.

Similarly an extensin-ADA fusion sequence, including a 5’ signal sequence from tobacco extensin (Loose et al., 1990) and the 5’ end of the ADA ORF sequence up to an internal BamHI site was synthesized (figure 3.14). The extensin-ADA was designed to contain a 5’
XbaI site, an ATG initiation codon, 75 bp 5’ tobacco extensin sequence and the first 60 bp of 5’ ADA ORF sequence up to an internal BamHI site (figure 3.14). To insert the extensin sequence 5’ to the ADA ORF, the extensin-ADA fusion sequence was digested with XbaI/BamHI, gel-extracted and inserted into XbaI/BamHI digested, gel-extracted p5’Omega_ADA in pJIT (figure 3.15b). E.coli DH5α was transformed with p5’Omega-Extensin_ADA and transformants were selected. Several ampicillin-resistant colonies were chosen and putative p5’Omega-Extensin_ADA plasmids were extracted. The insertion of Extensin-ADA fusion into p5’Omega_ADA was confirmed by DNA sequence analysis and restriction enzyme mapping using HindIII and EcoRI to release 5’ Omega-Extensin-PCRADA from pJIT.

The pJIT constructs, p5’Omega-PR1a_ADA and p5’Omega-Extensin_ADA were separately isolated by EcoRV digestion of pJIT5’Omega-PR1a_ADA and pJIT5’Omega-Extensin_ADA prior to gel-extraction. Isolated 5’Omega-PR1a_ADA and 5’Omega-Extensin_ADA fragments were separately inserted into EcoRV digested and gel-extracted pGreenI0029 T-region. E.coli DH5α was separately transformed with pGreenI0029-5’Omega-PR1a_ADA and pGreenI0029-5’Omega-Extensin_ADA and transformants selected. Transformed colonies were grown separately and putative pGreenI0029-5’Omega-PR1a_ADA and pGreenI0029-5’Omega-Extensin_ADA plasmids extracted. Insertion of constructs into plasmids was confirmed by restriction enzyme digestion of both the plasmids with EcoRV followed by agarose gel electrophoresis.

Electrocompetent Agrobacterium tumefaciens AGL1 were transformed separately with pGreenI0029-5’Omega-PR1a_ADA and pGreenI0029-5’Omega-Extensin_ADA along with the helper plasmid pSoup. Transformants were selected and transformation was confirmed by mapping of plasmid isolates from Agrobacterium transformants using SalI.
Figure 3.13: Synthesized PR1a-ADA fusion containing 87 bp coding for the N-terminal portion of PR1a and the first 60 bp of 5' ADA ORF sequence up to an internal BamHI site.

Figure 3.14: Synthesized extensin-ADA fusion containing 75 bp 5' tobacco extensin sequence and the first 60 bp of 5' ADA ORF sequence up to an internal BamHI site.
Figure 3.15: (a) Tobacco PR1a signal sequence inserted into p5' Omega_ADA construct (p5'Omega-PR1a_ADA construct), (b) Tobacco extensin signal sequence inserted into p5' Omega_ADA construct (p5'Omega-Extensin_ADA construct).
3.3.2 3’Hydroxyproline (p5’Omega-Extensin_ADA-3’Hydroxyproline) construct design

A partial ADA ORF- 3’serine-hydroxyproline fusion sequence (Xu et al., 2007) was designed and synthesized (figure 3.16) containing 346 bp from 3’ end of the ADA ORF sequence up to an internal PsiI site, a thrombin cleavage sequence, a 63 bp serine-hydroxyproline sequence and a TAG stop codon. A PsiI restriction enzyme site (TTATAA) was placed at the 5’ end, and a SacI restriction enzyme site (GAGCTC) was placed at the 3’ end. The ADA-3’Hydroxyproline fusion sequence was digested with PsiI/SacI and gel-extracted. The ADA-3’Hydroxyproline fragment was inserted into PsiI/SacI digested and gel-extracted pCDNA_ADA in pJIT (figure 3.2a). E.coli DH5α was transformed with pCDNA_ADA-3’Hydroxyproline and transformants were selected. Several ampicillin-resistant colonies were chosen and the insertion of ADA-3’Hydroxyproline fusion into pCDNA_ADA was confirmed by DNA sequence analysis and restriction enzyme mapping using HindIII and SacI to release CDNA_ADA-3’Hydroxyproline from pJIT.

To engineer an apoplast directing sequence at the 5’ end the construct p5’Omega-Extensin_ADA (figure 3.15b) was digested with HindIII/BamHI and 5’Omega-Extensin-A DA fusion was gel-extracted and inserted into HindIII/BamHI digested and gel-extracted pCDNA_ADA-3’Hydroxyproline. E.coli DH5α was transformed with p5’Omega-Extensin_ADA-3’Hydroxyproline (figure 3.17) and transformants were selected. Several ampicillin-resistant colonies were chosen and p5’Omega-Extensin_ADA-3’Hydroxyproline in pJIT was isolated. The insertion of 5’Omega-Extensin-A DA fusion into pCDNA_ADA-3’Hydroxyproline was confirmed by restriction enzyme mapping using HindIII and SacI to release p5’Omega-Extensin_ADA-3’Hydroxyproline from pJIT.
Finally, the construct p5’Omega-Extensin_ADA-3’Hydroxyproline along with 35S cassette was inserted into pGreenI0029 T-region by digestion of p5’Omega-Extensin_ADA-3’Hydroxyproline construct in pJIT and pGreenI0029 with EcoRV, followed by gel-extraction and ligation of vector and insert DNA. *E.coli* DH5α was transformed with the ligated pGreenI0029-p5’Omega-Extensin_ADA-3’Hydroxyproline construct and the transformants were selected. The pGreenI0029 plasmid containing p5’Omega-Extensin_ADA-3’Hydroxyproline construct was isolated and the insertion of p5’Omega-Extensin_ADA-3’Hydroxyproline construct into pGreenI0029 was confirmed by restriction enzyme mapping using EcoRV to release 35S-5’Omega-Extensin_ADA-3’Hydroxyproline from pGreen.

Electrocompetent *Agrobacterium tumefaciens* AGL1 were transformed with pGreenI0029-35S-5’omega-Extensin_ADA-3’Hydroxyproline along with the helper plasmid pSoup. Transformants were selected and transformation was confirmed by mapping of plasmid isolates from *Agrobacterium* transformants using *SalI*.
Figure 3.16: ADA-3' Hydroxyproline fusion containing a PsiI restriction enzyme site, 346 bp from 3' end of the ADA ORF sequence, a thrombin cleavage sequence, a 63 bp serine-hydroxyproline sequence, a TAG stop codon and a SacI restriction enzyme site.

Figure 3.17: p5’Omega-Extensin_ADA-3’Hydroxyproline construct.
Tobacco plants were transformed with the cytosolic constructs and tobacco BY-2 suspensions were transformed with both cytosolic and sub-cellular targeting constructs, using *Agrobacterium* mediated transformation. The transformants were selected after 6-8 weeks of transformation and ADA enzyme-activity of stable transformants were measured (section 2.5.2).
Chapter 4
Cytosolic expression of human adenosine deaminase in transgenic tobacco plants and BY-2 calli
4.1 Overview

Tobacco (*Nicotiana tabacum*) is the most widely used organism for biopharmaceutical production in plants owing to well established properties of gene transfer, expression analysis; rapid scale-up potential and high biomass yield (Fischer & Emans, 2000). Stable nuclear transformation is broadly used for production of heterologous proteins and recombinant proteins are generally extracted from leaves. In addition secretory pathway-targeting has been used for excretion of recombinant proteins from roots, leaves and cell suspensions (Komarnytsky *et al.*, 2000). Expression of foreign proteins in plant cell suspensions possess some advantages over whole plants owing to their rapid growth due to short cell doubling times, improved consistency of protein products due to less variation in environmental conditions with controlled bioreactor use and most importantly reduced post-translational silencing effects due to dedifferentiated cells that lack fully functional plasmodesmata (Lee *et al.*, 2000; Su and Lee, 2007).

Adenosine deaminase is found in numerous organisms ranging from bacteria to mammals and catalyses the conversion of cytotoxic adenosine analogues into their non-toxic inosine analogues. However, ADA has been found to be absent in plants (Dancer *et al.*, 1997). In plants, toxic adenosine analogues are converted into non-toxic analogues either by adenosine kinase or by phosphoribosyltransferase (Pelcher, 1995). Absence of ADA in plants provides an excellent platform to produce recombinant ADA in plants.

In this chapter, the expression of recombinant ADA in nuclear transformed plants and calli has been investigated. *Nicotiana tabacum* plants and BY-2 cells were transformed with various ADA constructs designed to express the enzyme in the cytosol. The resulting transgenic plants and calli were assessed for ADA mRNA and enzyme expression levels.
4.2 Results

4.2.1 Cytosolic expression in transformed plants

Nicotiana tabacum plants transformed with ADA cytosolic constructs were assessed for both ADA mRNA and enzyme expression. A non-transformed tobacco plant was also assayed. Young, medium and mature 5-6-week-old leaves of transformed plants were flash frozen in liquid nitrogen, ground to a fine powder and total soluble proteins extracted as described in section 2.5.1. The expression of ADA in plant extracts was tested by adenosine deaminase assay (section 2.5.2) to determine ADA levels and a Bradford assay used to determine total soluble proteins (section 2.5.3). Up to 7 transgenic plants transformed with three cytosolic constructs were analysed for ADA enzyme-activity (figure 4.1 and figure 4.2). ADA specific-activities in Units per milligram (U mg⁻¹) TSP were calculated using ADA-activity and Bradford protein assay data of corresponding transformants. ADA specific-activities of young, medium and mature leaves were measured initially to investigate age-specific activity. An average value was calculated from ADA specific-activities of young, medium and mature leaves, as no consistent correlation of ADA expression was observed with age (figure 4.1). Expression levels of plants transformed with construct pΔ5’UTR_ADA, containing PCR-amplified ADA and a short 21 bp 5’ UTR sequence was used as a basal construct to compare the expression levels of two other cytosolic constructs. The mean value for ADA-activity measured in these plants was 9.1 x 10⁻⁶ U mg⁻¹ TSP, barely above a background activity of 1.73 x 10⁻⁷ U mg⁻¹ TSP measured in non-transformed plants. Expression levels of the same transgene in independent transformants do not assume a normal distribution. Therefore, a distribution-free statistical test, namely the Mann-Whitney U test, which is based on median values, was used to evaluate difference between two gene-constructs. The U values were compared with a critical region table indicating the differences at 5 % as shown in table 4.1.
Figure 4.1: ADA specific-activities measured in the leaves of 6 transgenic plant lines transformed with pCDNA_ADA cytosolic construct.

Figure 4.2: ADA specific-activities measured in tobacco plants transformed with various cytosolic constructs. Each circle represents ADA-activity from an independent transformant, and the yellow diamond denotes the median value. The number of plants assayed is shown in brackets after each construct.
A pair-wise comparison of ADA specific-activities measured in transformed tobacco leaves (table 4.1) shows that two of the sample populations are statistically different as compared to plants transformed with construct pΔ5’UTR_ADA. As shown in figure 4.2 and table 4.1, comparison of the median ADA-activity ratios demonstrates that the presence of the human and TMV omega 5’UTR sequences caused a 7- to 182-fold increase in ADA specific-activity. One outlying transgenic line of p5’Ω_ADA transformed plants showed the highest ADA specific-activity of 3.72x10^{-3} U mg^{-1} TSP (66 ng mg^{-1} TSP). The highest ADA specific-activity of a pCDNA_ADA transformed plant shows 2.41x10^{-3} U mg^{-1} TSP (43 ng mg^{-1} TSP) (figure 4.2). This is respectively a 416-fold and a 273-fold increase in the ADA specific-activity as compared to the plants transformed with a short 5’UTR construct (table 4.2).

Table 4.1: Pair-wise comparisons of ADA specific-activities measured in transgenic tobacco leaves using Mann-Whitney U test (5 % level).

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Population identity</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pΔ5’UTR_ADA versus pCDNA_ADA</td>
<td>Different</td>
<td>P<0.05=0.0027</td>
</tr>
<tr>
<td>pΔ5’UTR_ADA versus p5’Ω_ADA</td>
<td>Different</td>
<td>P<0.05=0.0088</td>
</tr>
<tr>
<td>pCDNA_ADA versus p5’Ω_ADA</td>
<td>Different</td>
<td>P<0.05=0.0321</td>
</tr>
</tbody>
</table>

Table 4.2: Pair-wise comparisons of median ADA specific-activities measured in transgenic tobacco leaves.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Ratio of median ADA specific-activities</th>
<th>Fold increase median expression</th>
<th>Fold increase of highest expressing plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>pΔ5’UTR_ADA versus pCDNA_ADA</td>
<td>9.13x10^{-6} : 1.66x10^{-3}</td>
<td>182</td>
<td>273</td>
</tr>
<tr>
<td>pΔ5’UTR_ADA versus p5’Ω_ADA</td>
<td>9.13x10^{-6} : 5.79x10^{-5}</td>
<td>7</td>
<td>416</td>
</tr>
</tbody>
</table>
4.2.1.1 Detection of adenosine deaminase protein in transgenic tobacco plants using western blot analysis

Western blot analysis was used to detect adenosine deaminase protein in crude leaf extracts from transgenic tobacco plants. Bovine ADA extracted from calf intestine (100 ng) obtained from Sigma, UK was used as a positive control and 2.1, 2.4 and 2.3 mg of total proteins extracted from respective T1, T2 and T3 transgenic plants, were separated by electrophoresis on a 12 % (w/v) polyacrylamide gel, containing 0.1 % (w/v) SDS as described in section 2.5.4. Gel electrophoresed proteins were transferred to a nitrocellulose sheet (Hybond C) by semi-dry transfer under a constant current of 100 mA for 30 min. The membrane was probed with rabbit anti-ADA antibodies followed by incubation with a secondary antibody conjugated to horseradish peroxidase. The blot (figure 4.3) was developed by Luminol colour substrate solution followed by detection on a Typhoon scanner (Amersham) as described in section 2.5.5. TotalLab Quant software was used to analyse western blots (section 2.5.5). Lanes 3, 4, and 5, of figure 4.3 show that recombinant human ADA has an approximate molecular mass of 42 kDa and bovine ADA in lane 2 of figure 4.3 has a molecular mass of 41 kDa. The reported size of both human and bovine ADA is 41 kDa (Wiginton et al., 1984; Kelly et al., 1996). The apparent 1 kDa size difference of the recombinant ADA could be due to an artefact of the gel system, since large amounts of total proteins are loaded in lane 3-5 compared with lane 2 (figure 4.3). Low molecular weight bands, particularly in lane 5 may be due to protein degradation. High molecular weight bands may be due to some read through of the stop codon to other putative stop codon further downstream (Angenon et al., 1990).

Analysis of the western blot using TotalLab Quant software as described in section 2.5.5, estimated that 1 U of recombinant ADA is equal to approximately 17.7 µg of ADA protein.
This formula was used to calculate approximate estimations of ADA protein amounts in transformed tissues.

![Western blot of proteins extracted from the leaves of 3 transgenic tobacco plants transformed with cytosolic construct, pCDNA_ADA. Lane1: molecular weight marker; lane 2: bovine ADA; lane 3: protein extract from T1 leaves; lane 4: protein extract from T2 leaves and lane 5: protein extract from T3 leaves.]

4.2.1.2 Southern blot analysis of genomic DNA from plants transformed with the pCDNA_ADA construct

Total DNA was extracted from tobacco leaves of plants transformed with the pCDNA_ADA construct as described in section 2.2.4. Equal amounts of total DNA (10 µg) from three transformed plants and a non-transformed plant were digested with KpnI and SspI and fragments separated by electrophoresis on a 0.7 % (w/v) agarose gel. The DNA fragments were transferred to a Hybond-N+ nylon membrane and probed with a DIG-labelled ADA cDNA probe (section 2.2.12.3). High stringency washes (0.1x SSC, 0.1 % (w/v) SDS at 65 °C) were
carried out to remove non-specific nucleic acid binding (section 2.2.12.4). A photographic reproduction of the blot is shown in figure 4.4.

If the inserted construct was a single copy, then the number of expected bands would be one per lane and above 2177 bp in size as there are no internal KpnI and SspI restriction enzyme sites present on the construct. Hybridization was obtained for 4 bands in lane 1 (fragment sizes: 6.3, 5.6, 4.5, and 4.1 kbp), 3 bands in lane 2 (fragment sizes: 3.2, 2.8 and 2.5 kbp), 8 bands in lane 3 (fragment sizes: 5.7, 5.3, 4.9, 3.9, 3.5, 3.1, 2.9 and 2.5 kbp). There was no specific hybridization in lane 4 (non-transformed plant) as expected and all hybridizing bands were above 2177 bp, the size of the T-DNA region.

Multiple copies of ADA cDNA on the blot can be explained by the random integration of T-DNA into the plant genome by Agrobacterium-mediated transformation (DeBeuckeleer et al., 1981). Although the T1 plant genome exhibited the highest copy number (at least 8 copies), it does not correlate with higher ADA expression levels, where the T2 transformant had the highest ADA specific-activity (1.81 x10⁻³ U mg⁻¹ TSP; table 4.3). The darker bands in figure 4.4 could be due to insertion of tandem arrays of the insert. Hence, gene copy number may be greater than the number of hybridizing bands. The lack of correlation of copy number to ADA enzyme expression levels could be due to integration of the T-DNA inserts into either transcriptionally competent or silent regions of the plant genome (Springer et al., 1995) or alternatively, transgene silencing by DNA methylation (Hepburn et al., 1983). Transgene silencing can also occur post-transcriptionally due to instability of transcribed RNA (Meins F, 2000). Furthermore, Agrobacterium-mediated transformation is often associated with transfer of tandem copies of T-DNA at a single locus and it was also found that head to head inverted
T-DNA repeats around the right borer are also frequently associated with transgene silencing (Stam et al., 1997).

Figure 4.4: Southern blot of genomic DNA (10 µg) of transformed (pCDNA_ADA) and non-transformed tobacco plant leaves. Lane 1: T3 DNA, Lane 2: T2 DNA, Lane 3: T1 DNA, Lane 4: Non-Transformed plant DNA, and Lane 5: Roche DNA molecular weight marker III.
Table 4.3: Genome T-DNA copy number and ADA specific-activities of transgenic tobacco plants transformed with the pCDNA_ADA construct.

<table>
<thead>
<tr>
<th>Construct</th>
<th>ADA specific-activity (U mg⁻¹ TSP)</th>
<th>Minimum number of hybridizing bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCDNA_ADA [T1]</td>
<td>1.31 x10⁻³</td>
<td>8</td>
</tr>
<tr>
<td>pCDNA_ADA [T2]</td>
<td>1.81 x10⁻³</td>
<td>3</td>
</tr>
<tr>
<td>pCDNA_ADA [T3]</td>
<td>1.73 x10⁻³</td>
<td>4</td>
</tr>
</tbody>
</table>

4.2.1.3 Northern blot analysis of ADA mRNA from plants transformed with the pCDNA_ADA construct

To investigate any possible correlation of ADA mRNA and enzyme expression levels with ADA insert copy number, RNA extracted from leaves of transformed and non-transformed tobacco plants were analysed on northern blots (section 2.3.1). A photographic record of the blot and the stained ribosomal RNA present on an agarose gel is shown in figure 4.5.

Transgenic cell lines were analysed for mRNA amounts using TotalLab Quant software in order to correlate these values with corresponding T-DNA copies and ADA-activities (table 4.4) measured in the same plants (section 2.3.5). The T2 transformant in lane 5 of figure 4.5 showed the highest ADA mRNA levels (27.2 ng; table 4.4) with an estimated 3 copies of the T-DNA insert. Whereas, the T1 transformant in lane 6 showed the lowest ADA mRNA level (7.4 ng) with an estimated 8 copies of the T-DNA insert. The lower ADA expression level of T1 transformants could be due to the presence of silenced copies of ADA T-DNA inserts or posttranscriptional gene silencing (Que et al., 1997; Schubert et al., 2004).
Figure 4.5: (a) Northern blot of total RNA extracted from pCDNA_ADA transformed and non-transformed tobacco plant leaves. Lane 1: Transformant T6, Lane 2: Transformant T5, Lane 3: Transformant T4, Lane 4: Transformant T3, Lane 5: Transformant T2, Lane 6: Transformant T1 and Lane 7: Non-Transformed plant, (b) SafeView™ stained 2 % agarose gel of rRNA present in lane 1-7.

<table>
<thead>
<tr>
<th>Transformant</th>
<th>ADA specific-activity (U mg⁻¹ TSP)</th>
<th>ADA mRNA (ng)</th>
<th>Estimated genome T-DNA copy numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>1.31 x10⁻³</td>
<td>7.4</td>
<td>8</td>
</tr>
<tr>
<td>T2</td>
<td>1.81 x10⁻³</td>
<td>27.2</td>
<td>3</td>
</tr>
<tr>
<td>T3</td>
<td>1.73 x10⁻³</td>
<td>15.7</td>
<td>4</td>
</tr>
<tr>
<td>T4</td>
<td>2.41 x10⁻³</td>
<td>13.1</td>
<td>-</td>
</tr>
<tr>
<td>T5</td>
<td>1.58 x10⁻³</td>
<td>20.1</td>
<td>-</td>
</tr>
<tr>
<td>T6</td>
<td>1.47 x10⁻³</td>
<td>15.5</td>
<td>-</td>
</tr>
</tbody>
</table>
4.2.2 Expression of five ADA cytosolic constructs in tobacco BY-2 calli

Tobacco BY-2 cells are yellow-coloured de-differentiated cells which exhibit rapid growth in culture medium at optimal culture conditions. These cells generally multiply their numbers up to 100-fold within a week and owing to this property and the ability to transfer foreign genes with ease, BY-2 cells are used in many molecular farming experiments. Tobacco BY-2 cells in suspension were transformed with different cytosolic constructs namely: pΔ5’UTR_ADA, pCDNA_ADA, p5’Ω_ADA, p5’_3’ Ω_ADA and pSS 5’UTR_ADA as described in section 2.4.2. BY-2 calli lines transformed with these constructs were assessed for expression levels of both ADA mRNA and enzyme-activity as described in section 4.2.1. Up to 29 transgenic cell lines of different cytosolic constructs were analysed for ADA enzyme-activity as shown in figure 4.6. A Mann-Whitney statistical test was conducted as described by Pollard (1977). A pΔ5’UTR_ADA construct containing PCR-amplified ADA ORF and a short 21 bp 5’ UTR sequence was used as a basal construct to compare other cytosolic constructs. Any two constructs being compared were combined and ranked by ascending expression levels. U-values were calculated as describe in section 2.6.
Figure 4.6: ADA specific-activities measured in BY-2 calli transformed with various cytosolic constructs. Each circle represents ADA-activity from an independent transformant. The yellow diamond denotes the median value. The number of calli assayed is shown in brackets after each construct. * These transformed calli were analysed 9 months after the initial measurements were taken. ** These transformed calli were analysed 30 days after the initial measurements were taken.
A pair-wise comparison of ADA specific-activities in transgenic tobacco calli transformed with cytosolic constructs (table 4.5) shows that five out of seven sample populations are statistically non-identical. Comparison of the median ratios of these constructs shows a 1.3 to 20.5-fold increase in ADA specific-activity as compared to calli transformed with pΔ5’UTR_ADA construct (table 4.6).

Four outlying ADA specific-activities measured in calli transformed with construct p5’_3’Ω_ADA showed the highest ADA specific-activities of up to 4.50 x 10^{-3} U mg^{-1} TSP (80 ng mg^{-1} TSP). The highest ADA specific-activity of a pCDNA_ADA, pSS 5’UTR_ADA
and p5′Ω_ADA transformed calli showed specific-activities ranging from 2.20 to 3.50 x 10^{-3} U mg^{-1} TSP (39 to 62 ng mg^{-1} TSP) (figure 4.6). This is respectively a 15-fold to 32-fold increase in the ADA specific-activity as compared to the calli transformed with a short 5′UTR construct (table 4.6).

4.2.2.1 Northern blot analysis of transcribed ADA mRNA from tobacco BY-2 calli transformed with five cytosolic constructs

In order to assess whether ADA mRNA levels correlated with increased levels of ADA enzyme activity, northern blots of transformed tobacco BY-2 calli were performed. Total RNA was extracted as described in section 2.3.1 and equal amounts of RNA (3500 ng) were subjected to electrophoresis under denaturing conditions (section 2.3.2). The RNA was transferred to a Hybond-N+ nylon membrane as described in section 2.3.3 prior to probing with DIG-labelled ADA cDNA (section 2.2.12.3). A photographic reproduction of the blot was taken, as shown in figures 4.7 and 4.8.

As the PCR-amplified ADA ORF is 1092 bp in size, transcribed mRNA which includes 5′ and 3′ UTR sequences, would be larger than 1092 nucleotides (nt). Observed mRNA sizes were approximately 1100 nt and similar in size in the case of constructs p5′Ω_ADA and pΔ5′UTR_ADA (figure 4.7 and 4.8). Transcribed mRNA in construct, pCDNA_ADA, exhibited a size of 1300 nt. It was assumed that the larger mRNA size in this construct is due to the lengthy 5′ and 3′ UTR sequences in the human ADA cDNA.

Two transgenic cell lines from each construct were analysed for mRNA levels in order to investigate a possible correlation with their corresponding ADA activities (table 4.7). TotalLab Quant software was used to analyse northern blots (section 2.3.5). Table 4.7 shows ADA
enzyme and mRNA expression levels of constructs used for northern blot analysis. Lane 1 of figure 4.7a, the non-transformed cell line, showed no hybridizing bands. Calli cell lines T3 and T2 transformed with p5′Ω_ADA in lanes 2 and 3 of figure 4.7a exhibited 2.2 and 3.1 ng of ADA mRNA with respective 1.84 x 10^{-3} and 2.91 x 10^{-3} U mg^{-1} TSP ADA specific-activities (table 4.7). Whereas one calli cell line transformed with construct, pΔ5′UTR_ADA [T15], showed a significantly higher ADA mRNA level (8.8 ng) but expressed a relatively lower amount of ADA specific-activity (4.15 x 10^{-4} U mg^{-1} TSP). Lower ADA activities in this construct could be due to the short 5′ UTR, which contains only a 21 bp 5′ UTR sequence. Pickering and Willis, (2005) demonstrated that most of the regulation in translation occurs at initiation steps in the 5′-untranslated region, which gives rise to the 5′ leader sequence in mRNA. Pickering and Willis, (2005) further elaborated the importance of 5′ leader sequences in cap-dependent initiation and ribosomal entry sites. Though the mRNA amounts were the highest in the pΔ5′UTR_ADA [T15] construct, a lack of 5′UTR for the generation of an efficient 5′ leader sequence appears to have contributed towards the lower amount of expressed ADA enzyme-activity.

Calli cell lines (T2 and T3) transformed with pSS 5′UTR_ADA, in lanes 2 and 3 of figure 4.8, exhibited respectively 3.9 and 3.3 ng of ADA mRNA and showed relatively high ADA specific-activities (1.39 and 2.91 x 10^{-3} U mg^{-1} TSP respectively) (table 4.7). Although the calli cell lines transformed with pSS 5′UTR_ADA constructs, initially (5-6 weeks after transformation) showed a high ADA specific-activity, calli tested from subsequent sub culturing events showed drastically reduced (approximately 10-fold) ADA expression levels after 30 days as shown in figure 4.6. The decline in ADA enzyme-activity could be explained by degradation of mRNA as shown in figure 4.8. This adverse mRNA degradation in pSS 5′UTR_ADA construct should be further investigated with new transformed cell lines and may
possibly be due to posttranscriptional gene silencing events. Conversely, calli transformed with construct p5'Ω_ADA showed no reduction in ADA specific activities after 9 months (figure 4.6), exhibiting stable gene expression over a long period of time.

Calli transformed with construct p5'_3'Ω_ADA [T9], also showed a relatively higher ADA specific-activity (3.40 x 10^{-3} U mg^{-1} TSP) among the transgenic BY-2 cell lines analysed for mRNA levels as shown in table 4.7. However, T9 calli exhibited only a moderate amount of mRNA levels (approx. 4.5 ng) (figure 4.8). As stated previously, the presence of TMV Ω 5’ UTR significantly enhances translation of the associated message and further addition of TMV 3’ UTR increases the stability of mRNA further and also increases mRNA translation (Gallie and Kado, 1989; Gallie and Walbot, 1990). Hence, enhanced expression of ADA in transgenic BY-2 cell lines of p5'_3'Ω_ADA with lower transcribed mRNA levels could be explained by the stabilization and enhancing effects of the incorporated 5’ and 3’ TMV UTR sequences. However, as shown in table 4.7, comparison of ADA specific-activities with mRNA levels seems to indicate that there is no general correlation between amounts of RNA and ADA enzyme-activities.

![Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli. Lane 1: non-transformed calli, Lane 2: p5'Ω_ADA [T3], Lane 3: p5'Ω_ADA [T2], Lane 4: p\text{Δ}5'\text{UTR}_\text{ADA} [T15], Lane 5: p\text{Δ}5'\text{UTR}_\text{ADA} [T11], Lane 6: p\text{CDNA}_\text{ADA} [T13] and Lane 7: p\text{CDNA}_\text{ADA} [T5], (b) SafeView™ stained 2 % agarose gel of rRNA present in lane 1-7.](image)
Figure 4.8: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli. Lane 1: non-transformed calli, Lane 2: pSS 5’UTR_ADA [T3], Lane 3: pSS-5’UTR_ADA [T2], Lane 4: p5’_3’Ω_ADA [T11] and Lane 5: p5’_3’Ω_ADA [T9], (b) SafeView™ stained 2 % agarose gel of rRNA present in lane 1-5.

Table 4.7: ADA specific-activities of BY-2 calli transformed with cytosolic constructs alongside ADA mRNA amounts measured in northern blots.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>ADA specific-activity (U mg⁻¹ TSP)</th>
<th>ADA mRNA (ng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p5’Ω_ADA [T3]</td>
<td>1.84 x10⁻³</td>
<td>2.2</td>
</tr>
<tr>
<td>p5’Ω_ADA [T2]</td>
<td>2.91 x10⁻³</td>
<td>3.1</td>
</tr>
<tr>
<td>pΔ5’UTR_ADA [T15]</td>
<td>4.15 x10⁻⁴</td>
<td>8.8</td>
</tr>
<tr>
<td>pΔ5’UTR_ADA [T11]</td>
<td>4.34 x10⁻⁴</td>
<td>2.2</td>
</tr>
<tr>
<td>pCDNA_ADA [T5]</td>
<td>1.66 x10⁻³</td>
<td>7.2</td>
</tr>
<tr>
<td>pCDNA_ADA [T13]</td>
<td>2.87 x10⁻⁴</td>
<td>1.5</td>
</tr>
<tr>
<td>pSS 5’UTR_ADA [T3]</td>
<td>1.39 x10⁻³</td>
<td>3.9</td>
</tr>
<tr>
<td>pSS 5’UTR_ADA [T2]</td>
<td>2.91 x10⁻³</td>
<td>3.3</td>
</tr>
<tr>
<td>p5’_3’Ω_ADA [T11]</td>
<td>2.72 x10⁻³</td>
<td>10.0</td>
</tr>
<tr>
<td>p5’_3’Ω_ADA [T9]</td>
<td>3.40 x10⁻³</td>
<td>4.5</td>
</tr>
</tbody>
</table>
4.3 Discussion

Transgenic tobacco plants and calli were successfully generated following Agrobacterium-mediated transformation with different cytosolic constructs of the human adenosine deaminase gene. A number of primary transformants were tested for ADA enzyme-activity and protein using enzymatic assays and western blotting. Southern and northern blots were also performed for comparing insert copy number, levels of mRNA and enzyme activities between transformants.

Initially a western blot was performed with pCDNA_ADA construct transformed plants. The size of recombinant ADA extracted from transformed tobacco plants was found to be approximately 1 kDa higher than the reported human ADA molecular weight (figure 4.3). Although this may be due to an artefact of the gel system, it is thought that the size of recombinant ADA produced in tobacco could be due to nucleocytoplasmic O-GlcNAcylation. Since, some plant proteins undergo extensive glycosylation after translation including nucleocytoplasmic O-GlcNAcylation (Gomord et al., 2010). This could be investigated further using western blot analysis of transformant extracts treated to remove any associated carbohydrate groups from proteins.

There are many reports that show the expression levels of foreign genes in plants are not directly proportional to T-DNA insert copy number (Vergunst et al., 1998). This is partly due to integration of the insert T-DNA into transcriptionally silent regions of the plant genome (Springer et al., 1995). Transgene silencing by DNA methylation (Hepburn et al., 1983) or by promoter methylation (Meyer, 2000) together with post-transcriptional transgene silencing of transcribed RNA (Meins, 2000; Schubert et al., 2004) could also contribute to lack of correlation of insert copy number to expression levels. Moreover Agrobacterium-mediated
transformation is often associated with the transfer of tandem copies of T-DNA at a single
locus and head to head inverted T-DNA repeats around the right border are also frequently
associated with transgene silencing (Stam et al., 1997). Southern blot analysis confirmed that
ADA expression levels in plants transformed with cytosolic constructs are not directly
proportional to insert copy number. A transformed plant line with higher insert copy numbers
actually showed comparatively lower ADA specific-activities than transformed plant lines
with fewer insert copies.

It was postulated that the 5' leader and 3' trailer sequences formed by human 5' UTR and
3'UTR DNA sequences, respectively, would be active to a certain extent in transgenic plants
expressing recombinant ADA. And that the equivalent regions from TMV would stimulate
gene expression further. To test this hypothesis the median expression levels of ADA in
transgenic plants of different constructs were compared. Whole plants transformed with the
pCDNA_ADA construct showed a 182-fold increase in expression levels compared to
transgenic plants transformed with the construct containing minimal 5'UTR
(pΔ5'UTR_ADA), whereas, plants transformed with the construct containing TMV omega
5'UTR (p5'Ω_ADA) showed only a 7-fold increase in ADA-activity. However, one out-lying
p5'Ω_ADA transformed plant showed the highest ADA specific-activity, 3.72 x10^{-3} U mg^{-1}
TSP (66 ng mg^{-1} TSP). Whereas, the highest ADA specific-activity of a pCDNA_ADA
transformed plant was 2.41 x 10^{-3} U mg^{-1} TSP (43 ng mg^{-1} TSP) (figure 4.2). This is
respectively a 416-fold and a 273-fold increase in the ADA specific-activity compared to
plants transformed with the short 5'UTR construct (table 4.2). Because, only small numbers
of transgenic plants were assayed, higher ADA-activities of outlying plants do not allow
unequivocal conclusions to be drawn. A greater number of transgenic plants should be
investigated to clarify this data.
Tobacco BY-2 cells in suspension were also transformed with different cytosolic constructs containing minimal 5’UTR (pΔ5’UTR_ADA), human 5’ and 3’ UTR (pCDNA_ADA), TMV omega 5’ UTR (p5’Ω_ADA), TMV omega 5’ and 3’ UTR (p5’–3’ Ω_ADA) and RUBISCO small sub unit 5’ UTR (pSS 5’UTR_ADA). Stable transformants were tested for ADA-activity using enzymatic assays and northern blots were performed in order to compare the stability of mRNA to ADA enzyme-activities.

Gallie and Kado, (1989) demonstrated that the presence of the TMV 5’ untranslated leader sequence (Ω) significantly enhances translation in both eukaryotes and prokaryotes. It was further revealed that the presence of a CAA-rich region within Ω is responsible for this translational enhancement (Gallie, 2002). At the other end of TMV RNA genes, the 3’ UTR is involved in forming a complex tertiary structure containing a pseudoknot domain and a tRNA-like structure. The addition of 204-bases of this region to foreign mRNAs was shown to increase gene expression by 100-fold as compared to nonadenylated mRNA. The TMV 3’UTR seeming to increase the stability of associated sequences and hence, increasing translation in a similar manner to polyadenylated mRNA (Gallie and Walbot, 1990). Confirming these findings, pair-wise comparisons of ADA specific-activities as shown in table 4.6 revealed that the calli transformed with the pCDNA_ADA construct, containing human 5’ and 3’ UTR sequence caused only a 1.3-fold increase in median ADA specific-activity as compared to the calli transformed with construct containing minimal 5’UTR sequence (pΔ5’UTR_ADA). On the other hand, calli transformed with the construct containing TMV omega 5’ UTR sequence (p5’Ω_ADA) caused a 14-fold increase in median ADA specific-activity and incorporation of both TMV 5’ and 3’ UTR in the p5’–3’Ω_ADA construct, caused the highest increase in median ADA specific-activity of 20.5-fold. Moreover, one outlying
transgenic line of p5’_3’Ω_ADA transformed calli showed the highest ADA specific-activity of 4.50×10^{-3} U mg$^{-1}$ TSP (80 ng mg$^{-1}$ TSP), a 32-fold increase in ADA specific-activity over short 5’ UTR construct (table 4.6).

Patel et al., (2004 and 2006) demonstrated that the 5’ UTR from both C4 Amaranthus and Flaveria bidentis RUBISCO small subunit1 mRNAs confer translational enhancement on associated ORFs which leads to an increase in expression of foreign proteins. Confirming these findings, the calli transformed with construct pSS5’UTR_ADA, containing RUBISCO small subunit 5’ UTR exhibited an 11.5-fold increase of ADA specific-activity as compared to construct pΔ5’ UTR_ADA. One outlying transgenic line of pSS5’UTR_ADA transformed calli showed the highest ADA specific-activity of 3.20×10^{-3} U mg$^{-1}$ TSP (57 ng mg$^{-1}$ TSP) (figure 4.6) a 22-fold higher ADA specific-activity as compared to calli transformed with construct pΔ5’ UTR_ADA. Moreover approximately 12 transgenic calli lines of pSS5’UTR_ADA construct exhibited higher ADA specific-activity as compared to the mean ADA specific-activity of calli lines of pSS5’UTR_ADA (figure 4.6).

Though the initial ADA-enzyme expression levels were high in calli cell lines transformed with pSS 5’UTR_ADA construct immediately after selection of transformants, subsequent sub-culturing event showed a much reduced ADA-activity after 30 days of initial measurement. Northern blot analysis revealed that degradation of transcribed mRNA levels in pSS 5’UTR_ADA construct may have contributed towards the lower ADA expression levels. The reason for mRNA degradation in these calli lines may be due to posttranscriptional gene silencing events, since the nature of mRNA sequence may influence posttranscriptional gene silencing (Schubert et al., 2004). On the other hand the calli transformed with construct
p5’Ω_ADA showed a stable expression of ADA even after 9 months of sub-culturing events (figure 4.6).

Increased in expression of ADA in different cytosolic constructs containing different 5’ UTR sequences and 3’ UTR sequences is thought to be due to translational enhancing and mRNA stabilizing properties of these sequences (Gallie and Kado, 1989). The link between untranslated regions and increased expression of ADA was further elaborated by northern blot analysis. Although the mRNA amounts were the highest in the construct containing minimal 5’UTR (pΔ5’UTR_ADA; table 4.7), a lack of 5’UTR for the generation of 5’ leader sequence may have greatly contributed towards the lower amount of expressed ADA enzyme. It was also shown that the p5’_3’Ω_ADA, transgenic BY-2 cell lines had the lowest amounts of mRNA but the highest ADA expression, perhaps owing to mRNA stabilizing and translational enhancing effects of incorporated TMV 5’ and 3’ UTR sequences.

Successful cytosolic expression of a functional human adenosine deaminase in transgenic tobacco plants and calli has been demonstrated in this chapter. Attempts to increase the ADA yield by enhancing expression proved to be successful as it was found that incorporation of translational enhancing sequences in calli, at least, improved ADA expression by a considerable amount. On consideration, only a few transgenic plants were analysed and further generation of plants transformed with cytosolic constructs may reveal results more closely aligned with those found in BY-2 calli. The effect of sub-cellular targeting sequences such as PR1a and extensin in enhancing yield of recombinant ADA further will be discussed in following chapters.
Chapter 5
Subcellular directed expression of human adenosine deaminase in transgenic tobacco BY-2 calli
5.1 Overview

Potential use of plant cell cultures as an alternative production system for pharmaceutical proteins is restricted due to low recombinant protein yield and plays a major limitation in commercialising the technique. Hence, wide arrays of strategies have been employed in an attempt to enhance protein yield at the molecular, cell culture and downstream processing steps. Molecular strategies such as enhancing gene transcription, improving translational efficiency, incorporation of novel protein fusion technology and incorporation of secretory pathway targeting technology have been widely used in recent years to enhance the yield of foreign proteins in plant cell cultures (Desai et al., 2010). In this study, the incorporation of novel protein fusion technology and the incorporation of secretory pathway targeting technology have been employed to increase the expression of recombinant ADA in nuclear transformed BY-2 calli. Cells transformed with ADA constructs and the resulting transgenic calli have been assessed for ADA mRNA expression and ADA enzyme activities.
5.2 Results

5.2.1 Apoplast-directed expression in transformed BY-2 calli

Tobacco BY-2 cells in suspension were transformed with different constructs containing apoplast-directing signals described in chapter 3. These constructs are namely p∆5′UTR-PR1a_ADA, p∆5′UTR-Ext_ADA, p5′Ω-PR1a_ADA, p5′Ω-Extensin_ADA, pSS 5′UTR-PR1a_ADA, pSS 5′UTR-Extensin_ADA and p5′Ω-Extensin_ADA-3′Hydroxyproline (See section 3 for details). The BY-2 calli lines transformed with ADA apoplast-directed constructs were assessed for expression levels. Five to six-week-old transformed calli were flash-frozen in liquid nitrogen and ground to a fine powder. Total soluble proteins were extracted and the calli extracts were assayed for ADA enzyme-activity to determine ADA levels and a Bradford assay performed to determine total soluble proteins. Up to 30 transgenic cell lines of different apoplast-directed constructs were analysed as shown in figure 5.1. A Mann-Whitney statistical test was conducted as described by Pollard (1977). Calli transformed with various cytosolic constructs including a minimally deleted 5′UTR construct, p∆5 ′UTR_ADA and a TMV UTR construct, p5′ Ω_ADA were used as basal constructs with which to compare ADA levels in the corresponding calli transformed with apoplast-directed constructs. Any two constructs being compared were combined and ranked by ascending expression levels and the U values calculated as describe in section 2.6.
Figure 5.1: ADA specific-activities measured in BY-2 calli transformed with various cytosolic and apoplast directing constructs. Each circle represents ADA-activity from an independent transformant, and the yellow diamond denotes the median value. The number of calli assayed is shown in brackets after each construct.
A pair-wise comparison of apoplast-targeted constructs, containing TMV omega 5’UTR with cytosolic omega constructs, shows that ADA levels are not significantly different (table 5.1a). However, when the highest outlying ADA specific-activities of these constructs are compared an increase of ADA specific-activity of between 1.2 to 1.9-fold is observed (table 5.1b). Moreover, 2-5 transgenic lines from each apoplast-targeted construct exhibited a higher ADA specific-activity than the highest expressing p5’ΩADA construct (figure 5.1).
ADA expression data where PR1a and extensin signal sequences are incorporated with the short 21 bp minimally deleted 5'UTR (constructs pΔ5’UTR-PR1a_ADA and pΔ5’UTR-Ext_ADA) also show no significant difference. However again, when the highest expressing lines are compared an increase of ADA specific-activity of between 1.8 to 2.2-fold is observed (table 5.1b). Moreover, 5-6 transgenic lines from each corresponding apoplast-targeted construct exhibited a higher ADA specific-activity than the highest expressing pΔ5’UTR_ADA construct (figure 5.1). The highest outlying ADA specific-activity of p5’Ω-Ext_ADA-3’HP transformed calli also showed an increase of 1.7-fold over the highest expressing calli line transformed with p5’Ω_ADA.

5.2.2 Northern blot analysis of transcribed mRNA from calli transformed with different apoplast-directed constructs

In order to assess whether mRNA levels correlated with increased levels of ADA enzyme activity, northern blots of transformed and non-transformed tobacco BY-2 calli were performed. Total RNA was extracted as described in section 2.3.1 and equal amount of RNA (3500 ng) were subjected to electrophoresis under denaturing conditions (section 2.3.2). The RNA was transferred to Hybond-N+ nylon membrane as described in section 2.3.3 prior to probing with DIG-labelled ADA cDNA (section 2.2.12.3). A photographic reproduction of the blot was taken, as shown in figures 5.2, 5.3 and 5.4. TotalLab Quant software was used to analyse northern blots (section 2.3.5).

As PCR-amplified ADA is 1092 bp in size, transcribed mRNA would be larger than 1092 nucleotides. Observed mRNA sizes were approximately 1100 nucleotides and similar in size in all constructs apart from construct p5’Ω-Ext_ADA-3’HP (figure 5.4, lanes 2 and 3). Transcribed mRNA in construct, p5’Ω-Ext_ADA-3’HP, exhibited a size of 1200 nucleotides.
and the larger mRNA size in this construct caused by a lengthy DNA sequence (63 bp) coding for serine-hydroxyproline (Ser-Hyp) motifs incorporated at the 3’ end of the ADA ORF sequence.

Two transgenic cell lines from each construct were analysed for mRNA levels in order to correlate them with their corresponding ADA activities (table 5.2). No correlation was observed between the levels of ADA mRNA and expressed ADA enzyme-activities, either between transformants from the same constructs or between transformants of different constructs. For example, calli lines transformed with the constructs pΔ5’UTR_ADA [T11] and [T15] in figure 5.2, lanes 6 and 7 showed very different mRNA levels of 13.7 and 2.7 ng of ADA mRNA but had very similar ADA specific-activities of about 4×10^{-4} U mg$^{-1}$ TSP (table 5.2). Also the faint bands of constructs pΔ5’UTR-PR1a_ADA [T3] and [T2] in figure 5.2, lanes 2 and 3 showed approximately 2.0 and 9.2 ng of ADA mRNA with respective 9.15 and 6.05 $\times 10^{-4}$ U mg$^{-1}$ TSP ADA specific-activities (table 5.2). Comparing this data from different constructs, the cytosolic construct, pΔ5’UTR_ADA [T11], showed a 6-fold higher ADA mRNA level but a 2-fold lower ADA specific-activity than the equivalent apoplastic construct pΔ5’UTR-PR1a_ADA [T3]. Furthermore, the construct pΔ5’UTR-Ext_ADA [T11], if compared to the cytosolic construct, pΔ5’UTR_ADA [T11], showed very similar amounts of ADA mRNA levels but a 2-fold higher ADA specific-activity. These increased activities of ADA but with lower amounts of mRNA than in corresponding cytosolic constructs may be due to the incorporation of PR1a and extensin signal peptides which direct the ADA enzyme into the apoplastic space which in turn prevents the ADA enzyme from proteolytic degradation in the cytosol. Therefore, higher amounts of ADA mRNA do not necessarily yield higher ADA specific-activities. A similar conclusion can be drawn from PR1a and Hydroxyproline constructs when comparing with equivalent cytosolic constructs (table 5.2).
Figure 5.2: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli. Lane 1: non-transformed calli, Lane 2: pΔ5'UTR-PR1a_ADA [T3], Lane 3: pΔ5'UTR-PR1a_ADA [T2], Lane 4: pΔ5'UTR-Ext_ADA [T11], Lane 5: pΔ5'UTR-Ext_ADA [T5], Lane 6: pΔ5'UTR_ADA [T11] and Lane 7: pΔ5'UTR_ADA [T15]. (b) SafeViewTM stained 2% agarose gel of rRNA present in lane 1-7.

Figure 5.3: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli. Lane 1: non-transformed calli, Lane 2: p5'Ω-PR1a_ADA [T5], Lane 3: p5'Ω-PR1a_ADA [T2], Lane 4: p5'Ω-Ext_ADA [T14], Lane 5: p5'Ω-Ext_ADA [T10], Lane 6: p5'Ω_ADA [T3] and Lane 7: p5'Ω_ADA [T2]. (b) SafeViewTM stained 2% agarose gel of rRNA present in lane 1-7.
Figure 5.4: (a) Northern blot of total RNA extracted from transformed and non-transformed tobacco BY-2 calli. Lane 1: non-transformed calli, Lane 2: p5′Ω-Ext_ADA-3′HP [T6], Lane 3: p5′Ω-Ext_ADA-3′HP [T5], Lane 4: p5′Ω-Ext_ADA [T14], Lane 5: p5′Ω-Ext_ADA [T10], Lane 6: p5′Ω_ADA [T3] and Lane 7: p5′Ω_ADA [T2], (b) SafeView™ stained 2 % agarose gel of rRNA present in lane 1-7.

Table 5.2: ADA specific-activities of tobacco BY-2 calli transformed with cytosolic and apoplast-directing constructs alongside ADA mRNA amounts measured in northern blots.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>ADA specific-activity (U mg⁻¹ TSP)</th>
<th>ADA mRNA (ng)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p∆S′UTR_ADA [T15]</td>
<td>4.34 x10⁻⁴</td>
<td>2.7</td>
</tr>
<tr>
<td>p∆S′UTR_ADA [T11]</td>
<td>4.16 x10⁻⁴</td>
<td>13.7</td>
</tr>
<tr>
<td>p∆S′UTR-PR1a_ADA [T2]</td>
<td>6.05 x10⁻⁴</td>
<td>9.2</td>
</tr>
<tr>
<td>p∆S′UTR-PR1a_ADA [T3]</td>
<td>9.15 x10⁻⁴</td>
<td>2.0</td>
</tr>
<tr>
<td>p∆S′UTR-Ext_ADA [T5]</td>
<td>1.13 x10⁻³</td>
<td>18.8</td>
</tr>
<tr>
<td>p∆S′UTR-Ext_ADA [T11]</td>
<td>8.62 x10⁻⁴</td>
<td>13.0</td>
</tr>
<tr>
<td>p5′Ω_ADA [T2]</td>
<td>2.91 x10⁻³</td>
<td>3.3</td>
</tr>
<tr>
<td>p5′Ω_ADA [T3]</td>
<td>1.84 x10⁻³</td>
<td>4.7</td>
</tr>
<tr>
<td>p5′Ω-PR1a_ADA [T2]</td>
<td>3.35 x10⁻³</td>
<td>8.7</td>
</tr>
<tr>
<td>p5′Ω-PR1a_ADA [T5]</td>
<td>6.43 x10⁻³</td>
<td>8.3</td>
</tr>
<tr>
<td>p5′Ω-Ext_ADA [T10]</td>
<td>4.00 x10⁻³</td>
<td>12.1</td>
</tr>
<tr>
<td>p5′Ω-Ext_ADA [T14]</td>
<td>2.99 x10⁻³</td>
<td>10.6</td>
</tr>
<tr>
<td>p5′Ω-Ext_ADA-3′HP [T5]</td>
<td>3.36 x10⁻³</td>
<td>4.7</td>
</tr>
<tr>
<td>p5′Ω-Ext_ADA-3′HP [T6]</td>
<td>5.18 x10⁻³</td>
<td>12.5</td>
</tr>
</tbody>
</table>
5.3 Discussion

Transgenic tobacco BY-2 calli were successfully generated following Agrobacterium-mediated transformation with different constructs of the human adenosine gene. Stable transformants were assayed for ADA-activity and northern blots were performed to investigate a possible correlation between levels of ADA mRNA and enzyme activities.

Incorporation of TMV 5’ omega sequence which gives rise to 5’ omega leader in mRNA aids in recruiting translational initiation factors and ribosomes which in turn enhances the translation of omega carrying sequences (Gallie and Walbot, 1992; Schmitz et al., 1996). Another strategy used to increase foreign gene expression is to incorporate signal peptides sequences such as tobacco pathogenesis related protein sequence (PR1a) in conjunction with recombinant ORF to direct foreign proteins into the apoplast (Pen et al., 1993a). Ziegler et al., (2000) successfully expressed the catalytic domain of a thermostable eubacterium endo-1, 4-β-D-glucanase in the apoplast of tobacco BY-2 suspension cells and found that incorporation of PR1a signal peptide at the N-terminus increased the accumulation endo-1, 4-β-D-glucanase proteins. Xu et al., (2002) also demonstrated that the incorporation of PR1a signal peptide enhanced the yield by 2-fold as compared to cells transformed with a corresponding cytosolic construct.

As with PR1a the extensin signal peptide directs the proteins into the cell secretory pathway enhancing the yield presumably by prevention of recombinant protein from proteolytic degradation in the secretory pathway and apoplast or alternatively enabling the protein to fold correctly into a biologically active molecule. Plant extensins are well-characterized hydroxyproline-rich glycoproteins which forms a scaffolding network by covalent extensinpectin interactions followed by polymerization to provide the required rigidity of the cell wall.
Chapter 5 Subcellular directed expression of human adenosine deaminase in transgenic BY-2 calli

(Lamport et al., 2011). Incorporation of the signal peptide sequence of extensin at the N-terminus of recombinant proteins directs secretion into the apoplast (Showalter, 1993). Francisco et al., (1997) also demonstrated that incorporation of extensin N-terminal signal sequences enhanced the yield of bryodin 1(ribosome-inactivating protein) in BY-2 cell suspensions, as compared to the corresponding cytosolic construct.

Evolutionary conserved Hydroxyproline(Hyp)-rich glycoproteins (HRGPs) results in two types of glycomodules uniquely involving Hyp contiguity (Lamport, 1977; Shapk, 2001). One of which is formed by the addition of short unbranched arabinooligosaccharides to a contiguous Hyp residues, whereas the other is formed by the addition of branched arabinogalactan polysaccharides to clustered non-contiguous Hyp residues (Shapk, 2001). Defined as the hyperglycosylated arabinogalactan-proteins (AGPs), these often result in an increased molecular mass of the polypeptide (Kieliszewski and Lamport 1994; Kieliszewski and Shapk, 2000). Use of HRGPs for the purpose of enhancing the yield of secreted recombinant protein was demonstrated by Xu et al., (2008). The chimeric expression of HRGPs with recombinant interferon alpha2 (IFNα2) targeted for secretion using extensin signal peptide has not only increased the yield of recombinant protein by 350- to 1400-fold in the media as compared to a non-glycosylated IFNα2 control, but also increased the serum half-life and higher receptor binding capacity of IFNα2 when tested in mice (Xu et al., 2007; 2008)

Confirming these findings the overall spread of data in figure 5.1 seems to suggest that incorporation of apoplast targeting signals gives rise to lines of calli which express ADA at higher levels than calli transformed with a cytosolic counterpart. For example, the range of activities measured in p5’Ω_ADA was between 0.02 - 3.4 x 10^{-3} U mg^{-1} TSP. Whereas, the p5’Ω-PR1a_ADA apoplast targeted calli varies from 0.14 - 6.5 x 10^{-3} U mg^{-1} TSP and for
p5′Ω-Ext_ADA and p5′Ω-Ext_ADA-3′Hydroxyproline constructs the range in expression is 0.0061 - 4.0 and 0.034 - 6.0 x 10^-3 U mg^-1 TSP respectively.

Due to either transgene silencing or post-transcriptional gene silencing of inserted constructs, it is possible that the mean and median data points are distorted. It has been shown that the inverted tandem repeats of T-DNA trigger transgene silencing, which results in poorly transcribed genes leading to a poor expression of recombinant proteins (Sijen et al., 2001). It was further found that the transgenes in multiple copies under the control of strong promoters, such as the double CaMV 35S promoter, triggers post-transcriptional gene silencing by surpassing a gene-specific threshold (Vaucheret et al., 2001; Schubert et al., 2004).

The most relevant results to this study were observed in construct p5′Ω-Extensin_ADA-3′Hydroxyproline, which shows 6 transformed cell lines exhibit a higher ADA-activity than the highest p5′Ω_ADA cytosolic construct (figure 5.1). Successful expression of a functional human adenosine deaminase in transgenic tobacco BY-2 calli has been demonstrated in this chapter. Attempts to increase the ADA yield by enhancing expression proved to be successful as it was found that incorporation of TMV omega 5′ UTR sequences in calli improved ADA yield by a considerable amount and moreover, incorporation of apoplast-directing signals into the same construct produced calli cell lines with almost double the amounts of ADA-activity. Expression of proteins in fusion with AGP glycomodule Ser-Hyp (SO) repeats exhibited the highest mean ADA-activities.

The increased yield of subcellular-directed expression of ADA should be highly pronounced in cell suspensions as subcellular-directed proteins have been found to be secreted into the
culture media (Xu et al., 2010). Hence, the effect of ADA constructs with subcellular-directing sequences such as PR1a, extensin and Ser-Hyp (SO) fusions in transformed BY-2 cell suspensions will be presented in the following chapter.
Chapter 6
Expression of human adenosine deaminase in transgenic tobacco BY-2 cell suspension cultures
6.1 Overview

Using plant cell suspension cultures to express foreign proteins encompasses some advantages over whole-plants, microbial and animal cell culture systems (Hellwig et al., 2004). These include a rapid cell doubling time, well established genetic transformation methodologies, low endogenous proteolytic activity, low production of secondary metabolites, capability to carry out post-translational modification and reduced post-translational silencing (Lee et al., 2000; Su and Lee, 2007). Undifferentiated plant calli can be separated and propagated in culture media in a controlled condition to generate cell suspension cultures. Developed in the 1950’s, plant cell suspension culture technology has been used for the production of secondary metabolites such as digoxin, paclitaxel, and artemisinin (Georgiev et al., 2009; Huang and McDonald, 2009). With increasing demand for therapeutic proteins, as well as modern advances in plant molecular biology, plant cell culture systems have developed as an alternative system for producing therapeutically imperative proteins. The first two therapeutic proteins to be produced in transgenic plant cell suspension cultures were recombinant human serum albumin (Sijmons et al., 1990) and chloramphenicol acetyltransferase (Hogue et al., 1990). A recombinant poultry vaccine produced by Dow AgroSciences was the first plant cell suspension culture-produced therapeutic protein to be approved in February 2006 by the USDA (Kaiser, 2008). Another recombinant protein, human glucocerebrosidase (Taliglucerase alfa) used in ERT to treat Gaucher’s disease, has been produced by Protalix Biotherapeutics. This enzyme was the first plant cell-produced human enzyme to be approved by the United States Food and Drug Administration (FDA) in 2012 (Pfizer Press Releases, 2012). Although, many recombinant proteins have been produced in plant cell suspension culture systems, using tomato, rice, soybean and tobacco plants (Huang and McDonald, 2009), tobacco BY-2 cell suspensions are the most commonly used cell system. In this study, BY-2 cell suspension cultures transformed with various ADA
cDNA constructs have been investigated for extra and intra-cellular ADA enzyme-activities over a period of 15 days.

6.2 Results

Tobacco BY-2 cells were transformed with cytosolic constructs or different constructs containing apoplast-directing signals. These constructs are namely: pCDNA_ADA, p5'Ω-PR1a_ADA, p5'Ω-Extensin_ADA and p5'Ω-Extensin_ADA-3’Hydroxyproline (See section 3 for details). The highest expressing transformed BY-2 calli cell lines were selected and suspension cultures were generated in MS media substituted with 0.75 g L\(^{-1}\) of PVP (M.W 360,000) as described in section 2.1.2. In initial experiments PVP was shown to dramatically improve ADA enzyme-activity when included in the media (figure 6.1). It was subsequently included in all experiments described in this chapter. Aliquots of BY-2 cell suspension cultures were collected on alternate days, starting from day 0 up to day 15. The collected samples were subjected to centrifugation to separate cells from culture media, which was then tested for ADA enzyme-activity using an adenosine deaminase assay to determine the extra-cellular enzyme-activity secreted into the culture medium (section 2.5.2). Intra-cellular ADA-activities were assayed at the same time from pelleted cells, flash frozen in liquid nitrogen as described in section 2.5.1. Eight samples taken over 15 days from BY-2 cell suspensions transformed with various constructs were analysed and ADA-activities are shown in Units L\(^{-1}\) (figures 6.1 and 6.2). A cytosolic construct, pCDNA_ADA, containing human 5’ and 3’ UTR was used as a basal construct with which to compare the corresponding ADA-apoplast-directed constructs.
6.2.1 Extra-cellular ADA-activities in BY-2 cell suspensions transformed with ADA expressing constructs

There is between a 31 to 336-fold increase in secreted ADA-activity when apoplast targeting constructs are compared to the cytosolic control on day 7 (figure 6.1 and table 6.1). The highest extra-cellular ADA-activity was measured on the day 7 for p5’Ω-Ext_ADA-3’HP construct, transformed cell line which measured 739 U L⁻¹, a 336-fold increase over the cytosolic construct.

Extra-cellular ADA-activity of construct p5’Ω-Ext_ADA-3’HP transformed cell line peaked on day 7 followed by a drastic decline in ADA-activity in the next two days and increased ADA-activity thereafter. In a similar experiment investigating the monoclonal antibody levels in *Nicotiana tabacum* cell suspensions, Sharp and Doran, (2001) observed a slight increase in recombinant monoclonal IgG antibody levels in the medium on the day 16 of sampling after a drastic reduction of protein levels in suspension media following peak production on day 7. A similar pattern of ADA-activity was also observed in the construct p5’Ω-PR1a_ADA transformed cell line. Whereas the ADA-activity of construct p5’Ω-Ext_ADA transformed cell line showed a constant level of ADA from day 3 to day 11 followed by a steady decrease between days 13-15. The increase in ADA-activity on day 15 is thought to be due to cell death and the stabilizing effect of the PVP on released ADA in the media. As shown in the figure 6.1, the construct p5’Ω-Ext_ADA-3’HP transformed cell line showed a large sudden increase of ADA levels on day 13 of sampling. This could be due to stabilizing effect by both PVP and also the extensively glycosylated arabinogalactan motifs present on released ADA serving to protect associated ADA from proteolytic degradation. Xu et al., (2007) demonstrated that the incorporation of arabinogalactan motifs increased the resistance of the
recombinant IFNα2 to chymotryptic digestion by up to 13-fold. This could be further investigated with prolonged incubation times.

![Graph showing ADA-activities over time](image)

Figure 6.1: Extra-cellular ADA-activities measured in various cytosolic and apoplast-directing constructs in transformed BY-2 cell suspensions.

<table>
<thead>
<tr>
<th>Constructs compared</th>
<th>Ratio of highest ADA-activities (Day 7)</th>
<th>Fold increase of highest ADA-activity on day 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCDNA_ADA versus p5’Ω-PR1a_ADA</td>
<td>2.2: 186.0</td>
<td>85</td>
</tr>
<tr>
<td>pCDNA_ADA versus p5’Ω-Ext_ADA</td>
<td>2.2: 68.4</td>
<td>31</td>
</tr>
<tr>
<td>pCDNA_ADA versus p5’Ω-Ext_ADA-3’HP</td>
<td>2.2: 739.4</td>
<td>336</td>
</tr>
<tr>
<td>p5’Ω-Ext_ADA versus p5’Ω-Ext_ADA-3’HP</td>
<td>68.4: 739.4</td>
<td>11</td>
</tr>
</tbody>
</table>
6.2.2 Intra-cellular ADA-activities in BY-2 cell suspensions transformed with ADA expressing constructs

There is up to a 1.5-fold increase in the highest recorded intra-cellular ADA-activity when suspensions transformed with apoplast targeting constructs are compared to the cytosolic control construct (figure 6.1 and table 6.1). The highest intra-cellular ADA-activity was measured on day 7 for the p5′Ω-Ext_ADA-3′HP construct, transformed cell line which measured 19.1 U L\(^{-1}\), a 1.5-fold increase over the cytosolic construct.

Unlike extra-cellular ADA-activity, intra-cellular ADA-activity of different constructs peaked on different days, ranging from day 7 to 11. The highest intra-cellular ADA-activity of the cell line containing apoplast targeting construct p5′Ω-PR1a_ADA, was measured on day 11 of sampling as 15.2 U L\(^{-1}\), a 1.2-fold increase over the cytosolic construct (table 6.2). Whereas, the highest intra-cellular ADA-activity of the cell line containing construct p5′Ω-Ext_ADA, was measured on day 7 of sampling (8.4 U L\(^{-1}\)). Lower intra-cellular ADA-activity in cell suspensions can be explained by the targeting of ADA enzyme by N-terminal signal sequences into the secretory pathway, which in turn leads to secretion into the media, leaving little intra-cellular ADA enzyme.
Figure 6.2: Intra-cellular ADA-activities measured in various cytosolic and apoplast-directing constructs in transformed BY-2 cell suspensions.

Table 6.2: Pair-wise comparisons of highest intra-cellular ADA-activities measured in transgenic tobacco BY-2 cell suspensions.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Ratio of highest ADA-activities</th>
<th>Fold increase/decrease of highest ADA-activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>p cDNA_ADA versus p5’Ω-PR1a_ADA</td>
<td>12.7: 15.2</td>
<td>1.2</td>
</tr>
<tr>
<td>p cDNA_ADA versus p5’Ω-Ext_ADA</td>
<td>12.7: 8.4</td>
<td>0.3</td>
</tr>
<tr>
<td>p cDNA_ADA versus p5’Ω-Ext_ADA-3’HP</td>
<td>12.7: 19.1</td>
<td>1.5</td>
</tr>
<tr>
<td>p5’Ω-Ext_ADA versus p5’Ω-Ext_ADA-3’HP</td>
<td>8.4: 19.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>
As shown in Table 6.3, the highest intra-cellular ADA-activity in suspensions was measured in the cell line transformed with construct p5’Ω-Ext_ADA-3’HP (19.1 U L⁻¹/0.3 mg L⁻¹). Whereas the highest extra-cellular ADA-activity in the same construct showed a 739.4 U L⁻¹ (13 mg L⁻¹), which is a 39-fold increase in the extra-cellular ADA levels as compared to intra-cellular levels in suspension (Table 6.3). The highest intra-cellular ADA-activity of p5’Ω-Ext_ADA construct measured 8.4 U L⁻¹ (0.15 mg L⁻¹), whereas the extra-cellular ADA-activity of the corresponding constructs measured 68.4 U L⁻¹ (1.2 mg L⁻¹), an 8-fold increase in the extra-cellular ADA levels as compared to intra-cellular levels in suspension. This
suggests that the majority of the produced ADA has been secreted into the medium and also
the highly glycosylated ADA containing hydroxyproline motifs seems to be stabilizing the
recombinant protein eventually enhancing the yield. Table 6.3 confirms that most of the
recombinant ADA targeted to the apoplast by N-terminal signal sequences, have been secreted
into the medium, leaving little intra-cellular ADA enzyme.

Measurement of TSP in cell suspensions over time is an indicator of cell growth (Lee et al.,
2001). As shown in figure 6.3, the amount of total soluble protein measured in tobacco BY-2
cell suspensions shows a rapid increase by up to 2-fold from day 0 to day 5, followed by an
almost constant level of TSP until day 11. A reduction in TSP occurred on day 13, followed
by a slight increase on day 15. Nagata et al., (1992) and Horemans et al., (2003) also
demonstrated that the exponential growth of BY-2 cells in suspension occurs from day 0 to 5,
followed by a stationary phase. Sharp and Doran, (2001) reported that the growth of
Nicotiana tabacum cells in suspension does not peak with foreign protein production, where
maximum secreted levels of antibodies were observed on day 7 before maximum biomass
was reached on day 14. Hence, higher amounts of biomass (or TSP) do not always peak with
higher foreign protein production. Factors such as culture conditions and recombinant
construct design determine when peak levels of targeted proteins are secreted into the
medium. Confirming this Magnuson et al., (1996) showed that secreted monoclonal antibody
heavy chain γ in transgenic Nicotiana tabacum cell suspension peaked on day 7 followed by
a rapid decrease. Similarly, Lee et al., (2001) showed that murine GM-CSF expressed in
transgenic Nicotiana tabacum cell suspension reached maximum levels on day 6 followed by
a decline. In line with these findings, the highest amounts of secreted ADA were observed on
day 7, two days after amounts of TSP had reached maximum levels.
Table 6.4: High-yield expression of pharmaceutical proteins in plant cell suspension cultures.

<table>
<thead>
<tr>
<th>Therapeutic proteins</th>
<th>Host cells</th>
<th>Protein yields and signal used</th>
<th>Promoter</th>
<th>Localization</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human interferon α2b (hIFN α2)</td>
<td>N. tabacum cv BY-2</td>
<td>28 mg L⁻¹ (Ext)</td>
<td>CaMV35S</td>
<td>Secreted</td>
<td>Xu et al., (2007)</td>
</tr>
<tr>
<td>Human growth hormone (hCH)</td>
<td>N. tabacum cv BY-2</td>
<td>35 mg L⁻¹ (Ext)</td>
<td>CaMV35S</td>
<td>Secreted</td>
<td>Xu et al., (2010)</td>
</tr>
<tr>
<td>0. sativa L. cv. Donjin</td>
<td>57 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Kim et al., (2008a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B surface antigen (HBsAg)</td>
<td>glycase max cv WilliamsB2 (Soybean) 22 mg L⁻¹ (ER signal) (OCS)3mas</td>
<td>Intracellular</td>
<td>Smith et al., (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mAb against HBsAg</td>
<td>N. tabacum cv BY-2</td>
<td>15 mg L⁻¹ (Ext)</td>
<td>CaMV35S</td>
<td>~50% secreted</td>
<td>Yano et al., (2004)</td>
</tr>
<tr>
<td>Bryodin 1</td>
<td>N. tabacum cv NT-1</td>
<td>30 mg L⁻¹ (Ext)</td>
<td>CaMV35S</td>
<td>Secreted</td>
<td>Francisco et al., (1997)</td>
</tr>
<tr>
<td>Human α1-antitrypsin (hAAT)</td>
<td>0. sativa (rice) 200 mg L⁻¹ (RAmy3D) 85 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Huang et al., (2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0. sativa cv Taipei 309</td>
<td>247 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Terashima et al., (1999)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0. sativa (rice)</td>
<td>110 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Trexler et al., (2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0. sativa (rice)</td>
<td>50 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Trexler et al., (2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig)</td>
<td>0. sativa (rice) 76.5 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Park et al., (2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human granulocyte-macrophage colony stimulating factor (hGM-CSF)</td>
<td>0. sativa (rice) 129 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Shin et al., (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human lysozyme</td>
<td>0. sativa cv Taipei 309 3%-4% TSP* (RAmy3D)</td>
<td>Intracellular</td>
<td>Huang et al., (2002b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human serum albumin (HSA)</td>
<td>0. sativa (rice) 77 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Huang et al., (2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human interleukin-12 (IL-12)</td>
<td>0. sativa (rice) 31 mg L⁻¹ (RAmy3D)</td>
<td>Secreted</td>
<td>Shin et al., (2010b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human alkaline phosphatase</td>
<td>N. tabacum cv NT-1 27 mg L⁻¹</td>
<td>Secreted</td>
<td>Becerra-Arteaga et al., (2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse IgG anti Streptococcus surface antigen</td>
<td>N. tabacum cv NT-1 10.8 mg L⁻¹</td>
<td>Secreted</td>
<td>Wongsamuth and Doran (1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human anti-HIV antibody 2G12</td>
<td>N. tabacum cv BY-2 ~10 mg L⁻¹</td>
<td>Secreted</td>
<td>Holland et al., (2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human α-1-antitrypsin</td>
<td>N. tabacum cv BY-2 10 mg L⁻¹ (proaleurain)</td>
<td>CaMV35S</td>
<td>Secreted</td>
<td>Fu et al., (2009)</td>
<td></td>
</tr>
<tr>
<td>Human lactoferrin</td>
<td>Acanthopanax senticosus 3.6% TSP* (ER signal)</td>
<td>SWPA2</td>
<td>Intracellular</td>
<td>Jo et al., (2006)</td>
<td></td>
</tr>
<tr>
<td>N. tabacum cv BY-2 4.3% TSP* (ER signal)</td>
<td>SWPA2</td>
<td>Intracellular</td>
<td>Choi et al., (2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Adenosine deaminase</td>
<td>N. tabacum cv BY-2 13 mg L⁻¹ (Ext, HP) 3.3 mg L⁻¹ (PR1a) 1.2 mg L⁻¹ (Ext)</td>
<td>CaMV35S</td>
<td>Secreted</td>
<td>Results mentioned in this thesis</td>
<td></td>
</tr>
</tbody>
</table>

*TSP: total soluble proteins. Modified from Xu et al., (2011)
In line with previous attempts to express biopharmaceuticals in plant cell suspensions using apoplast targeting signals, BY-2 cell suspensions transformed with constructs containing apoplast targeting signals gave considerably higher levels of secreted ADA. Approximate extra-cellular ADA levels of 13 mg L\(^{-1}\), 3.3 mg L\(^{-1}\) and 1.2 mg L\(^{-1}\) were observed respectively in BY-2 cell suspensions transformed with p5’Ω-Ext_ADA-3’HP, p5’Ω-PR1a_ADA and p5’Ω-Ext_ADA constructs (table 6.4). These are comparable to the levels of 30 mg L\(^{-1}\) measured for an extensin-bryodin constructs in tobacco cell suspensions. But lower than for example, hGM-CSF driven by a rice \(\alpha\)-amylase leader measured in rice cell suspension.
6.3 Discussion

Tobacco BY-2 cell suspensions were prepared from calli transformed with a cytosolic and three apoplastic targeting constructs. The extra- and intra-cellular ADA-activities were measured on alternate days for 15 days in order to investigate the levels of ADA expression in cell suspension over time. The highest ADA enzyme-activities of suspensions transformed with various apoplastic targeting constructs were compared to the highest ADA activity of a suspension transformed with a cytosolic construct in order to determine the overall increase in yield.

Incorporation of signal peptide sequences such as tobacco pathogenesis related protein (PR1a) in conjunction with recombinant proteins directs associated proteins into the apoplast leading to higher yield in cell suspensions (Pen et al., 1993a; Ziegler et al., 2000). Confirming these findings a comparison of highest extra-cellular ADA-activity ratios (day 7) shows that the incorporation of a PR1a N-terminal signal sequence along with the TMV omega 5’UTR sequence in BY-2 cell suspensions increased the ADA-activity by 85-fold as compared to the pCDNA_ADA cytosolic construct (table 6.1). Whereas, the intra-cellular ADA levels only increased by 1.2-fold, showing that almost all the ADA enzyme is secreted into the external medium (table 6.2).

As with PR1a, the extensin signal peptide directs linked proteins into the secretory pathway enhancing the yield presumably by directing recombinant proteins away from proteolytic degradation in the cytosol and also in some cases enabling proteins to fold into biologically active structures. Incorporation of plant extensin signal peptide sequence at the N-terminus of recombinant proteins has been shown to direct secretion of recombinant proteins into the apoplast, which in turn are secreted into the culture medium of cell suspensions, eventually
enhancing the recombinant protein yield (Showalter, 1993; Francisco et al., 1997). Confirming these findings the comparison of highest extra-cellular ADA activity ratios shows that the incorporation of an extensin N-terminal signal sequence along with TMV omega 5’UTR sequence in BY-2 cell suspensions increased the ADA activity by 31-fold as compared to the pCDNA_ADA cytosolic construct (table 6.1). A decreased ADA activity of 0.3-fold was observed in intra-cellular samples from the same culture (table 6.2).

Another important strategy, by which recombinant proteins can be accumulated at high levels in cell suspension, is to express as a fusion with hydroxyproline (Hyp) residues at the C-terminus (Xu et al., 2007). C-terminal hydroxyproline (Hyp) residues attract extensive O-glycosylation, increasing the molecular size, stability and serum half-life of the associated proteins in a similar way to therapeutic protein PEGylation (Shapk, 2001; Xu et al., 2007). Confirming the findings of Xu et al., (2007; 2008 and 2010), the most relevant results to this study were observed in BY-2 cell suspension containing the construct, p5’Ω-Extensin_ADA-3’Hydroxyproline, where a comparison of highest extra-cellular ADA-activity (day 7) shows a 336-fold increase in ADA-activity as compared to the cell suspension transformed with the cytosolic construct pCDNA_ADA (figure 6.1 and table 6.1).

Successful expression of a functional human adenosine deaminase in transgenic tobacco BY-2 cell suspensions has been demonstrated in this chapter. Attempts to increase the ADA yield, by incorporation of apoplast-directing signals in constructs, increased the ADA yield in the culture medium. Expression of proteins in fusion with the AGP glycomodule, Ser-Hyp (SO) repeats, exhibited the highest ADA-activities (739.4 U L⁻¹/13 mg L⁻¹) secreted into culture medium in BY-2 cell suspensions. It’s also interesting to note that in cell suspensions of calli transformed with the hydroxyproline construct, ADA levels are more than 10-fold greater
than when the extensin signal is used alone (table 6.3). This magnitude of difference in expression is not the same when ADA amounts are compared between the two corresponding calli (see chapter 5 figure 5.1). Here there is only a 1.6-fold increase in ADA yields between the same two calli lines. Again, this may be due to the stabilizing affect of both the hydroxyproline glycomodule and PVP on secreted ADA, but cell age also seems to be of paramount importance here. Since, cells in suspension are all a few days old, whereas cells in calli range in age from a few days to a few weeks. Hence, in support of the findings of Xu et al., (2007, 2008 and 2010) a possible way forward to enhance the yield of foreign proteins in transgenic plant cell cultures is to express proteins as a fusion with AGP glycomodule Ser-Hyp (SO) repeats targeted to secretion.
Chapter 7
Discussion
Enzyme replacement therapy with polyethylene glycol conjugated bovine ADA (PEG-ADA) has been in use since 1987 for the treatment of ADA deficiency associated severe combined immunodeficiency syndrome (Booth et al., 2007). Although ERT with PEG-ADA is generally well tolerated by patients, some patients develop neutralizing antibodies that hinders catalytic activity and enhances PEG-ADA clearance (Chaffee et al., 1992). Hence, ERT with recombinant human ADA is thought to be an alternative to successfully overcome this problem. Adenosine deaminase catalyses the conversion of cytotoxic adenosine analogues into their non-toxic inosine analogues and is present in numerous organisms ranging from bacteria to mammals with the exception of plants (Dancer et al., 1997). Conversion of toxic adenosine analogues into non-toxic analogues in plants are catalysed either by adenosine kinase or by phosphoribosyltransferase (Pelcher, 1995). Absence of ADA in plants provides an excellent platform to produce recombinant ADA in plants.

Although bacteria are classed as cost-effective and convenient production systems for many small human proteins such as human insulin and growth hormone, inability to carry out post-translational modification and assembly steps which are required for biological activity of most complex proteins, hinders their use for producing such proteins (Sharma and Sharma, 2009). As an alternative production system, plants exhibit an effective and efficient eukaryote protein synthesis mechanism, and with the advent of modern plant biotechnology, plants can be used to produce large quantities of protein with readily established gene expression systems (Shih and Doran, 2009). Plant expression systems are also free of mammalian pathogens and thus offer a prominent advantage over mammalian expression systems. As outlined in chapter 1, a wide array of techniques has been used in recent years to increase the expression levels of foreign genes in plants to ensure commercial feasibility. Moreover, a
readily available range of plant hosts and well established gene expression systems allows a variety of choices depending on the product under production and the site of production.

The recent advances in the use of plant cell cultures producing valuable pharmaceutical proteins highlights their benefits over whole-plants. Cell cultures: exhibit rapid growth due to short cell doubling times; can be used in controlled bioreactors to improve protein consistency; can exert mammalian-like post-translational modifications; and most importantly have reduced post-transciptional silencing effects due to dedifferentiated cells (Lee et al., 2000; Su and Lee, 2007). Moreover, plant cell suspension cultures can be modified to secrete proteins into media in sterile conditions in vitro which in turn reduces the cost of downstream processing. Hence, there is great potential for the production of foreign proteins, cost-effectively in large quantities. Whole plants and other plant cell systems are therefore ideal candidates for the production of human ADA at high-levels.

The work described in this thesis represents a study to assess the possibility of increasing expression levels of a functional human ADA in plants. The highest observed ADA specific-activity of 3.70×10^{-3} U mg$^{-1}$ TSP, which is ~65.5 ng mg$^{-1}$ TSP of ADA (0.006 % of TSP) was obtained from plants transformed with a p5'Ω_ADA cytosolic construct. Stable ADA expression in transgenic plants was achieved without any plant codon optimisation of the gene ORF and only between 6 and 7 transgenic plants were analysed from each construct, therefore there is a potential to further increase expression levels using codon optimisation and analysing greater numbers of transgenic plants.

For a BY-2 cell line transformed with a cytosolic construct p5’_3’Ω_ADA, the highest observed ADA specific-activity measured was 4.50×10^{-3} U mg$^{-1}$ TSP, which is ~80 ng mg$^{-1}$
TSP of ADA (0.008 % TSP). This consolidates the findings of Schmitz et al., (1996) and Gallie and Walbot, (1990) where incorporation of omega TMV 5’ and 3’ UTR sequence was shown to increase expression levels of associated sequences. Northern blot analysis of transformed calli confirmed the mRNA stabilizing and translational enhancing effects of incorporated omega TMV 5’ and 3’ UTR sequences. In addition, southern blot analysis showed that ADA expression levels in plants transformed with cytosolic constructs are not directly proportional to insert copy number, confirming the findings of Jones et al., (1985) amongst many others. Transformed plants with higher insert copy number actually showed lower ADA specific-activities. Western blot analysis of these plants confirmed that the molecular weight of recombinant ADA was very similar to that measured for human ADA.

In an attempt to increase the levels of ADA further, a strategy of targeting expressed proteins into the plant secretory pathway was employed, since cytosolic proteases have been implicated in destruction of over-expressed foreign proteins in the cytosol and some proteins fold up more efficiently into biologically active conformation in the ER (Doran, 2000). For this reason a tobacco pathogenesis related protein (PR1a) signal peptide sequence was placed at the N-terminus of the polypeptide sequence to direct associated ADA into the apoplast. This was predicted to increase the protein yield as shown by Pen et al., (1993a) and Ziegler et al., (2000). The plant apoplast is a non-living part of plant tissue, external to the cell membrane and composed of the cell walls, intercellular spaces, and the lumen of dead structures such as xylem cells. Since this region doesn’t contain proteases, proteins targeted here are predicted to accumulate. In this study an attempt was made to direct ADA to the apoplast by stable nuclear transformation of BY-2 calli with constructs containing a PR1a N-terminal signal sequence. The highest observed ADA specific-activity of 6.50 x10⁻³ U mg⁻¹ TSP (~0.012 % of TSP) was obtained from BY-2 calli transformed with a p5’Ω-PR1a ADA
subcellular-targeting construct. This is almost 2-fold higher than obtained for the highest performing cytosolic construct. The same construct in cell suspension produced the highest overall ADA-activity of 201 U L\(^{-1}\) on day 7 of growth (table 7.1 and 7.2). In an attempt to consolidate this data, another apoplast directing signal taken from a tobacco extensin signal sequence was also investigated. Extensin (Ext) N-terminal signal sequences have been shown to increase the yield of a ribosome-inactivating protein (bryodin 1) in BY-2 cell suspensions (Francisco et al., 1997). Extensin N-terminal signal sequences incorporated into a p5’Ω-Extensin_ADA subcellular-targeting construct, resulted in ADA specific-activities of up to 4.30 \(\times 10^{-3}\) U mg\(^{-1}\) TSP, of ADA (~0.0076 % TSP) in one calli cell line. This is only slightly higher than (a 1.2-fold increase) than that found with the highest performing cell line transformed with a cytosolic construct. The highest observed overall ADA-activity of 76.8 U L\(^{-1}\) was obtained on day 7 for a BY-2 cell suspension transformed with the same construct (table 7.1 and 7.2).

Although ADA levels were almost doubled in transformed BY-2 calli and cell suspensions by use of apoplast targeting signals, higher levels were sought by incorporation of Serine-Hydroxyproline repeats at the C-terminus of ADA. Xu et al., (2007); (2008); (2010) demonstrated that the incorporation of the AGP glycomodule, Ser-Hyp (SO) repeats, at the C-terminus of recombinant proteins enhances secreted protein yield by between 350- to 1400-fold in BY-2 cell suspension as compared to a non-glycosylated counterpart. Incorporating the AGP glycomodule Ser-Hyp (SO\(_{10}\)) repeats at the C-terminus in the p5’Ω-Ext_ADA-3’HP subcellular-targeting construct resulted in ADA specific-activities of up to 6.00 \(\times 10^{-3}\) U mg\(^{-1}\) TSP in BY-2 calli (~0.011 % TSP). This is significantly higher than (a 1.7-fold increase) that measured in the highest performing calli transformed with the cytosolic construct. Cell suspension data revealed that the highest observed combined intra and extra-cellular ADA-
activity of 758.4 \(\text{U L}^{-1} \) was obtained on day 7 in BY-2 cell suspension transformed with p5'Ω-Ext_ADA-3'HP subcellular-targeting construct (table 7.1 and 7.2). Approximately a 4-fold higher ADA level as compared to a cell suspension transformed with a PR1a construct. The increased yield is thought to be due to the protein stabilizing affect of the hydroxyproline glycomodule. Xu et al., (2007) found that AGP glycomodule Ser-Hyp \((\text{SO}_{10})\) repeats not only increased the molecular weight of the protein but also the stability.

Levels of expressed ADA do not always yield significantly more ADA product in calli, when different constructs are compared. However, when ADA production is compared between constructs in transformed cell suspensions much higher secreted levels (up to 7-fold, figure 6.1) are evident. Hence, it is clear that the incorporation of the AGP glycomodule Ser-Hyp \((\text{SO}_{10})\) repeats at the C-terminus of ADA ORF along with the protein stabilizing affect of PVP significantly increased the ADA yield in cell suspensions. Another factor taken into consideration here is the cell age difference between cell suspension and calli, where, age of cells in suspension can be measured in days but cells in calli range in age from a few days to a few weeks. Further to these findings, thrombin cleavage of glycosylated motifs didn’t increase the ADA-activity considerably. Hence, it would seem that the biological activity of ADA is not significantly hindered by the extensively glycosylated AGP glycomodule. Minute intracellular ADA levels \((20 \text{ U L}^{-1})\) also suggested that more than 95 % of the produced ADA has been secreted into the culture medium.
Table 7.1: Summary of the highest ADA levels obtained in tobacco plants, BY-2 calli and BY-2 cell suspension transformed with various constructs.

<table>
<thead>
<tr>
<th>Construct</th>
<th>ADA U mg⁻¹ TSP</th>
<th>Estimated ADA ng mg⁻¹ TSP</th>
<th>ADA as % TSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant cytosolic</td>
<td>3.70 x10⁻³</td>
<td>65.5</td>
<td>0.006</td>
</tr>
<tr>
<td>Calli cytosolic</td>
<td>4.50 x10⁻³</td>
<td>80</td>
<td>0.008</td>
</tr>
<tr>
<td>Calli PR1a</td>
<td>6.50 x10⁻³</td>
<td>115</td>
<td>0.012</td>
</tr>
<tr>
<td>Calli extensin</td>
<td>4.30 x10⁻³</td>
<td>76</td>
<td>0.0076</td>
</tr>
<tr>
<td>Calli AGP</td>
<td>6.00 x10⁻³</td>
<td>106</td>
<td>0.011</td>
</tr>
<tr>
<td>BY-2 suspension cytosolic</td>
<td>1.50 x10⁻³</td>
<td>26.5</td>
<td>0.002</td>
</tr>
<tr>
<td>BY-2 suspension PR1a</td>
<td>1.10 x10⁻²</td>
<td>195</td>
<td>0.019</td>
</tr>
<tr>
<td>BY-2 suspension extensin</td>
<td>8.53 x10⁻³</td>
<td>151</td>
<td>0.013</td>
</tr>
<tr>
<td>BY-2 suspension AGP</td>
<td>4.04 x10⁻²</td>
<td>715</td>
<td>0.072</td>
</tr>
</tbody>
</table>

Table 7.2: Summary of the highest combined intra and extra-cellular ADA levels obtained in BY-2 cell suspensions transformed with various constructs.

<table>
<thead>
<tr>
<th>Construct</th>
<th>ADA U L⁻¹</th>
<th>Estimated ADA mg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>BY-2 suspension cytosolic</td>
<td>19.2</td>
<td>0.25</td>
</tr>
<tr>
<td>BY-2 suspension PR1a</td>
<td>201</td>
<td>3.5</td>
</tr>
<tr>
<td>BY-2 suspension Extensin</td>
<td>76.8</td>
<td>1.4</td>
</tr>
<tr>
<td>BY-2 suspension AGP</td>
<td>758.4</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Problems regarding expensive and time-consuming downstream processing of plant produced proteins, especially when the host plant contains undesirable toxic compounds, are also addressed in this study where production of proteins in cell suspension provides for a more efficient method of extracting produced protein from the culture medium. Moreover, dedifferentiated BY-2 cells do not produce large amounts of phenolic and other toxic compounds found in whole tobacco plants. Further, the controversy surrounding GM plants grown in non-controlled environments would be irrelevant, as cell suspensions can be entirely contained in a controlled environment and offer a huge potential to produce biopharmaceuticals in a sterile environment (Kaiser, 2008; Shaaltiel et al., 2007). The
productions of the first two USFDA-approved biopharmaceuticals in plant cell culture endorse this approach for the production of future products.

Although some plant glycosylation patterns are highly immunogenic to mammals (Doran, 2000; Leonard et al., 2005), the presence of the AGP glycomodule Ser-Hyp (SO) repeats have been found to be non-immunogenic in mice (Xu et al., 2007; 2010). Further investigations should be conducted in order to categorically confirm this finding, because this novel technique provides a potential plant protocol to produce non-immunogenic proteins including ADA with a greatly enhanced plasma half-life in vivo when used therapeutically. It was found that hydroxyproline glycomodule fusion of therapeutic proteins is as effective as PEGylation in enhancing plasma half-life (Yang et al., 2004; Xu et al., 2010).

This study was set up to investigate a range of strategies to increase the production of a functional human adenosine deaminase in plants and plant cell suspensions. Amongst all the strategies employed, incorporation of the AGP glycomodule at the C-terminus of the ADA protein has clearly proven to be the most effective product-yield enhancing strategy. The work described in this thesis leaves scope for future investigation to enhance levels of recombinant human ADA (rhADA) further and to explore protocols for the isolation of a pure product from transgenic plant materials. Purification of ADA is pivotal in order to explore the clinical importance of rhADA. Although the secretion of rhADA into the media of BY-2 cell suspension cultures eliminates most of the difficulties involved in protein purification from plant materials, future research will focus on purification steps necessary of rhADA isolation. Proteins of therapeutic applications require the highest purity (>99 %). Purification of proteins involves a series of enrichment steps including use of column-based methods such as ion exchange chromatography, affinity chromatography, hydrophobic interaction
chromatography and size-exclusion chromatography; also selection-based methods such as microfiltration, ultrafiltration, pertraction and pervaporation. Such steps increase the production costs significantly, where more than 80 % of the total production costs in plant systems accounts for downstream processing (Hellwig et al., 2004). Once purified, investigations can be carried out to further characterise the rhADA using protein sequence analysis and enzyme kinetic studies. Once functionality and characterisation of rhADA are complete, investigation into biological activity of rhADA can be determined using ADA deficient mouse models (Blackburn et al., 1998).

In order to explore the possibility of further increasing the yield of rhADA in plant cell suspensions an ER retention construct containing C-terminal KDEL sequence could be transformed into BY-2 cells and transformants would be analysed for ADA activity. The highest yields of some recombinant proteins were achieved by the retention in ER, rather than secretion into culture media (Doran, 2000). Conrad and Fielder, (1998) demonstrated that the ER retention of single-chain antibody fragments accounted for increased levels of between 10 to100-fold compared to secreted antibody fragments. Hence, investigation into recombinant ADA retention in the ER could prove to be successful. Glycosylation studies of the ADA produced in different constructs should also be investigated in order to determine the glycosylation patterns generated when ADA is retained in the ER or secreted into the apoplastic space.

Genomes of different organisms including plants employ codon bias as mechanisms for optimising and regulating protein expression (Gustafsson et al., 2004; Murray et al., 1989). Campbell and Gowri, (1990) reported the use of a preferred 44 codon set in plants, with a preference for codons ending in A or U by dicots such as tobacco. Various codon optimised
foreign genes have shown an enhanced expression in transformed plants including green fluorescent protein (Rouwendal et al., 1997). Hence, it may be possible to enhance ADA expression levels further in tobacco by codon optimisation of the ADA ORF to reflect the codon bias of tobacco.

The chloroplast expression system offers numerous benefits over nuclear expression systems, including high-level expression and stable transformation due to lack of epigenetic interference. Furthermore, because of cytoplasmic localisation, transgenic chloroplasts are not transmitted through pollen grains. Many reports of transgene expression in tobacco chloroplasts show that foreign proteins can be produced in the range of 5-20 % TSP (Maliga, 2004). Hence, expressing ADA in chloroplasts may provide an excellent opportunity to further increase expression levels by very large amounts.

As well as AGP fusions employed in this study, other recently developed protein fusion strategies have been used to increase the accumulation and simplify the purification of recombinant proteins in plants. For example, foreign proteins have been fused to C-terminal elastin-like polypeptides (ELPs), containing pentapeptide repeats of ‘VPGXG’. These peptide fusions possess the thermally responsive properties of elastin, which enables easy and inexpensive purification known as inverse transition cycling (Meyer and Chilkoti, 1999). In addition, ELP fusion also enhances recombinant protein accumulation by reducing protein degradation through resisting hydrolysis and proteolytic degradation (Raucher and Chilkoti, 2001; Zhang et al., 1996). ELP fusions have increased the yield of foreign proteins by between 2 to 100-fold (Conley et al., 2011). Interestingly, as with AGP fusions, ELP fusion does not greatly affect the biological activity of associated recombinant proteins (Floss et al., 2009). Similarly, hydrophobin fusions have also been shown to increase associated
recombinant protein yield (Joensuu et al., 2010). Hydrophorbins are small surface-active proteins generally found in filamentous fungi (Conley et al., 2011). Due to their surface-active properties, recombinant proteins fused to hydrophobins are easily purified by a surfactant-based aqueous two phase system, ensuring maximum purification (Linder et al., 2004). In addition, hydrophobin fusions enhance the accumulation of associated proteins through protein stabilising affects and have also been found to be inert as fusions do not affect the biological activity of associated proteins. Finally, another strategy used to enhance recombinant protein yield in transgenic plants is to express foreign proteins as a fusion with zeolin. Zeolins are naturally occurring plant seed proteins containing proline-rich motifs (Herman and Larkins, 1999). These proteins have the ability to induce the formation of ER-derived protein bodies in plant tissues which is thought to be the main factor responsible for ER retention (Kogan et al., 2001). Zeolin fusions have been found to increase the yield of foreign proteins by up to 100-fold (Torrent et al., 2009a). Hence, as well as expressing ADA as an AGP fusion protein, other types of fusions could potentially enhance yields further.
Chapter 8

References

edible vaccine against hepatitis B virus', The journal of the Federation of American Societies for Experimental Biology, 13(13), pp. 1796-1799.

immunogenicity in mice', *Proceedings of the National Academy of Sciences*, 93(11), pp. 5335-5340.

Qi, W., Fong, C. and Lamport, D. T. A. (1991) 'Gum Arabic glycoprotein is a twisted hairy rope: a new model based on O-galactosylhydroxyproline as the polysaccharide attachment site', Plant Physiology, 96, pp. 848–855.

Que, Q., Wang, H. Y., English, J. J. and Jorgensen, R. A. (1997) 'The Frequency and Degree of Cosuppression by Sense Chalcone Synthase Transgenes Are Dependent on Transgene Promoter Strength and Are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence', The Plant cell, 9(8), pp. 1357-1368.

Shoji, Y., **Farrance,** C. E., **Bautista,** J., **Bi,** H., **Musiychuk,** K., **Horsey,** A., **Park,** H., **Jaje,** J., **Green,** B. J., **Shamloul,** M., **Sharma,** S., **Chichester,** J. A., **Mett,** V. and **Yusibov,** V. (2012) 'A plant-based system for rapid production of influenza vaccine antigens', *Influenza and Other Respiratory Viruses*, 6(3), pp. 204-210.

Wiginton, D. A., Adrian, G. S. and Hutton, J. J. (1984) 'Sequence of human adenosine deaminase cDNA including the coding region and a small intron', Nucleic Acids Research, 12(5), pp. 2439-2446.

Winslow, L. C. and Kroll, D. J. (1998) 'Herbs as medicines', Archives of Internal Medicine, 158, pp. 2192–2199.

Wongsamuth, R. and Doran, P. M. (1997) 'Production of monoclonal antibodies by tobacco hairy roots', Biotechnology and Bioengineering, 54, pp. 401-415.

Chapter 9
Appendices
Appendix A- Presentations, posters and abstract publications

Oral presentations

Annual PGR conference at School of Health and Biosciences, University of East London, June 2010
Oral presentation on “Expression of ADA in plant cell cultures”

Annual PGR conference at School of Health and Biosciences, University of East London, June 2009
Oral presentation on “Expression of ADA in plant cell culture”

Annual PGR conference at School of Health and Biosciences, University of East London, July 2008
Oral presentation on “Expression of ADA in plant cell culture”
Poster presentations

Society of Experimental Biology annual conference, Glasgow (28th June- 1st July 2009)

Poster presentation: “Expression of functional human adenosine deaminase in tobacco plant cell suspensions and whole plants”

Introduction

An inherited disorder: ADA deficiency is a form of severe combined immunodeficiency, which is ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The absence of ADA activity in sufferers eventually results in a dysfunctional immune system due to the build up of toxic metabolites and to date this has been treated, with mixed success, using PEG-ADA, made from purified bovine ADA coupled to polyethylene glycol. It is likely however, that an enzyme replacement therapy protocol based on recombinant human ADA would be a more effective treatment for disease. Therefore, as a preliminary step to produce therapeutic levels of human ADA in transgenic tobacco plant cultures a human cDNA has been cloned into a plant expression vector and used to produce transformed tobacco BY2 cells over-expressing human enzyme. Various constructs aimed at targeting ADA to the ER and apoplast will also be tested in order to increase expression and yield. The primary objective of this study is therefore, to evaluate the ability of transgenic plant culture systems to produce and secrete biologically active human adenosine deaminase.

Methods

Using Agrobacterium tumefaciens tobacco BY2 cell suspensions have been transformed with the following constructs placed under the control of the 35SCaMV promoter and terminator pGREEN0029

Construct 1: pGREEN-ADA

A human ADA cDNA with no modifications was ligated into the EcoRI/Xbal site of pJTi1, containing the 35S cassette. The 35S cassette was subsequently removed using EcoRV and ligated into the EcoRV site of the pGREEN0029 (Figure 1).

Construct 2: PR1a-ADA fusion

A PCR-amplified ADA cDNA construct in pGREEN0029 was modified at the 5’ end with 90bp PR1a apoplast targeting signal sequence. (Ziegler et al 2000)

Construct 3: Extensin-ADA fusion

A PCR-amplified ADA cDNA construct pGREEN0029 was modified at 5’ end with 78bp tobacco extensin signal sequence. (Francisco et al 1997)

After 9-10 weeks of growth BY2 call transformed with pGREEN0029ADA were assayed for the presence of ADA activity, expressed as units of ADA enzyme activity per gram fresh weight.

Results

Figure 2: 6 weeks old BY2 call transformed with pGREEN00029-ADA

Figure 3: ADA activity of 18 BY2 calli, independently transformed with pGREEN00029-ADA. The expression of ADA activity in the pGREEN0029-ADA transformed BY2 calli is shown vary from under 0.1 to 1 unit per fresh gram weight. Non-transformed calli have little or no background activity due to the absence of ADA in plants.

Discussion

Differential expression of ADA in assayed calli might be due to differential integration of a varying number of ADA DNA copies into the plant cell genome. This will be investigated further using DNA gel blot analysis. Investigations into the expression of ADA in suspension cultures derived from the transformed BY2 calli will be performed shortly as well as the transformation and assay of BY2 cells with the remaining constructs. Additional constructs designed to target ADA to ER and apoplast and hence the cell suspension medium will be constructed and tested.

References

Recombinant pharmaceutical manufacturing from plants - the future of molecular farming
held at Euroscicon, Hertfordshire in 15th October 2010
Poster presentation: “Expression of a functional human adenosine deaminase in tobacco
plant cell suspensions and whole plants”
Winner of the best poster price

EXPRESSION OF A FUNCTIONAL HUMAN ADENOSINE DEAMINASE
cDNA IN PLANT CELL CALLI AND WHOLE PLANTS
S. Singhabalutu, DH Bringloe and J George
University of East London, School of Health and Bioscience,
Romford Road, Stratford, London E15 4LZ

Abstract

An inherited disorder Adenosine deaminase deficiency is a form of severe combined immunodeficiency which is
ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The
absence of ADA activity in sufferers eventually results in a dysregulated immune system due to the build-up of toxic
metabolites and to date this has been treated, with mixed success, using PEG-ADA, made from purified bovine ADA
coupled to polyethylene glycol. It is likely however, that an enzyme replacement therapy protocol based on
recombinant human ADA would be a more effective treatment for this disease. Therefore, as a preliminary step
to produce biologically active human ADA in transgenic tobacco plants and cell suspensions, a human cDNA has
been cloned into a plant expression vector under the control of the CaMV 35S promoter and terminator. ADA
specific activities of between 0.001-0.03 units per mg protein were measured in crude extracts isolated from both
transformed tobacco plant leaves and calli. Plasmid constructs aimed at targeting ADA to the apoplast have also
been made using PR1a and exterase 5 appoplast-targeting sequences. Suspension cultures and calli
transformed with these constructs exhibited a five to six-fold increase in ADA activity compared to cultures
transformed with the cytosolic-directed construct. In addition, ADA constructs targeted to the ER by a C
terminal KDEL sequence also exhibited an increase in ADA activity of up to six-fold compared to cytosolic-directed
constructs.

Methods

Using Agrobacterium tumefaciens tobacco BY2 cell suspensions and whole plants have been transformed with
the following constructs placed under the control of the 35S CaMV promoter and terminator in pGREEN0029:

Construct 1: pGREEN-ADA
A human ADA cDNA with no modifications which contain the maximizer 5 leader and 3’UTR was inserted into
pGREEN0029 vector under the control of the CaMV 35S promoter and terminator (Figure 1).

Construct 2: PR1a-ADA fusion
A PCR-amplified ADA cDNA construct in pGREEN0029 modified at the 5’ end and with a 90bp PR1a appoplast-targeting
signal sequence (Zeigler et al 2005).

Construct 3: Ext-ADA fusion
A PCR-amplified ADA cDNA construct in pGREEN0029 modified at 5’ end and with 780 bp tobacco exterase signal
sequence (Francisco et al 1997).

Construct 4: ADA-KDEL fusion
A human ADA cDNA modified by addition of a 3’ KDEL sequence, coding for the ER targeting signal KDEL
(Mitsubayashi et al 2004).

After 5 to 10 weeks of growth BY2 calli and whole plants transformed with different constructs were assayed for the
presence of ADA activity, expressed as units of ADA enzymatic activity per grams TSP.

Results

Conclusion

A human ADA has been successfully expressed in tobacco
plants and calli using the 35S promoter to direct expression
in the tobacco cell cytosol/tapetum, the apoplast and the ER. An
expected molecular weight of 41 kDa and the integrity of the recombinant polypeptide chain has also been confirmed
by western blot analysis of transgenic tobacco leaf tissue
transformed with the cytosolic construct.

Subcellular targeting has been used as a general method to
increase the stability and hence the yield of recombinant proteins (Somberg et al 2002). This is confirmed by our
results, since targeting the expression of ADA to the apoplast
and ER was found to increase ADA-specific activity by 4 to 6
fold. Further efforts to increase recombinant ADA expression
are underway using various TMV translational enhancers
and chimeric glycosyltransferase constructs.

References