Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity

Article


Xia, Hongrui, Sun, Longru, Lou, Hongxiang and Rahman, M. 2014. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity. Phytomedicine.
AuthorsXia, Hongrui, Sun, Longru, Lou, Hongxiang and Rahman, M.
Abstract

Salvianolic acid A (Sal A), an important constituent of Radix Salviae Miltiorrhizae (RSM), is effective for the treatment of myocardial infarction (MI) and coronary heart disease due to its potential in the improvement of acute myocardial ischemia. However, its content is very low in RSM. So it is obvious to find a rich source of Sal A or to improve its content by conversion of other related components into Sal A modifying reaction conditions. In this research we focused on the conversion of Sal B into Sal A in aqueous solutions of RSM by using different reaction conditions including pH, temperature, pressure and humidity. During the reactions, the contents of Sal A, Sal B and danshensu in the RSM were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LCMS). The results indicated that the conversion of Sal B into Sal A in RSM tissues under the conditions of a high temperature, high pressure and high humidity was efficient and thereby, was readily utilized to prepare rich Sal A materials in practice.

JournalPhytomedicine
ISSN0944-7113
Year2014
PublisherElsevier
Accepted author manuscript
License
CC BY-ND
Web address (URL)http://dx.doi.org/10.1016/j.phymed.2014.01.005
Publication dates
Print16 Feb 2014
Publication process dates
Deposited10 Mar 2014
FunderNational Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Copyright information“NOTICE: this is the author’s version of a work that was accepted for publication in Phytomedicine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. "
Permalink -

https://repository.uel.ac.uk/item/85qq6

Download files


Accepted author manuscript
  • 139
    total views
  • 384
    total downloads
  • 0
    views this month
  • 15
    downloads this month

Export as

Related outputs

Antileprotic drugs
Shaik, A. B. and Rahman, M. 2023. Antileprotic drugs. in: Acharya, P. C. and Kurosu, M. (ed.) Medicinal Chemistry of Chemotherapeutic Agents: A Comprehensive Resource of Anti-Infective and Anti-cancer Drugs Academic Press. pp. 267-282
Antitubercular drugs
Shaik, A. B. and Rahman, M. 2023. Antitubercular drugs. in: Acharya, P. C. and Kurosu, M. (ed.) Medicinal Chemistry of Chemotherapeutic Agents: A Comprehensive Resource of Anti-Infective and Anti-cancer Drugs Academic Press. pp. 217-265
Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight
Sharma, D., Sharma, N., Manchanda, N., Prasad, S. K., Sharma, P. C., Thakur, V. K., Rahman, M. and Dhobi, M. 2022. Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight. Biomolecules. 13 (1), p. Art. 17. https://doi.org/10.3390/biom13010017
Editorial: Natural products as potential therapeutics to tackle life-threatening infections: From field to market
Rahman, M. 2022. Editorial: Natural products as potential therapeutics to tackle life-threatening infections: From field to market. Frontiers in Pharmacology. 13 (Art. 1099181). https://doi.org/10.3389/fphar.2022.1099181
Antitubercular activity assessment of fluorinated chalcones, 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives: In vitro, molecular docking and in-silico drug likeliness studies
Lagu, S. B., Yejella, R. P., Nissankararao, S., Bhandare, R. R., Golla, V. S., Subrahmanya Lokesh, B. V., Rahman, M. and Shaik, A. B. 2022. Antitubercular activity assessment of fluorinated chalcones, 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives: In vitro, molecular docking and in-silico drug likeliness studies. PLoS ONE. 17 (Art. e0265068). https://doi.org/10.1371/journal.pone.0265068
Antimicrobial Diterpenes: Recent Development From Natural Sources
Saha, P., Rahman, F. I., Hussain, F., Rahman, S. M. A. and Rahman, M. 2022. Antimicrobial Diterpenes: Recent Development From Natural Sources. Frontiers in Pharmacology. 12 (Art. 820312). https://doi.org/10.3389/fphar.2021.820312
Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh - an ethnopharmacological perception
Siddique, H., Pendry, B., Rashid, M. A. and Rahman, M. 2021. Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh - an ethnopharmacological perception. Journal of Herbal Medicine. 29 (Art. 100484). https://doi.org/10.1016/j.hermed.2021.100484
Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3’,7-Dimethyl ether
Al-Majmaie, S., Nahar, L., Rahman, M., Nath, S., Saha, P., Talukdar, A. D., Sharples, G. P. and Sarker, S. D. 2021. Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3’,7-Dimethyl ether. Molecules. 26 (Art. 1114). https://doi.org/10.3390/molecules26041114
Synthesis, and biological screening of chloropyrazine conjugated benzothiazepine derivatives as potential antimicrobial, antitubercular and cytotoxic agents
Shaik, A. B., Bhandare, R. R., Nissankararao, S., Lokesh, B. V. S., Shahanaaz, S. and Rahman, M. 2020. Synthesis, and biological screening of chloropyrazine conjugated benzothiazepine derivatives as potential antimicrobial, antitubercular and cytotoxic agents. Arabian Journal of Chemistry. 14 (Art. 102915). https://doi.org/10.1016/j.arabjc.2020.102915
Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities
Shaik, A. B., Bhandare, R. R., Nissankararao, S., Edis, Z., Tangirala, N. R., Shahanaaz, S. and Rahman, M. 2020. Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities. Molecules. 25 (Art. 3188). https://doi.org/10.3390/molecules25143188
Antimicrobial Natural Products
Rahman, M. and Sarker, S. 2020. Antimicrobial Natural Products. in: Sarker, S. and Nahar, L. (ed.) Medicinal Natural Products: A Disease-Focused Approach, Volume 55 Academic Press. pp. 77-113
Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus
Siddique, H., Pendry, B. and Rahman, M. 2019. Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus. Molecules. 24 (3), p. Art. 385. https://doi.org/10.3390/molecules24030385
Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus
Rahman, M., Shiu, Winnie K.P., Gibbons, Simon and Malkinson, John P. 2018. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. European Journal of Medicinal Chemistry. 155, pp. 255-262. https://doi.org/10.1016/j.ejmech.2018.05.038
Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and Bioassay
Rahman, M. 2015. Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and Bioassay. in: Evidence-Based Validation of Herbal Medicine Elsevier. pp. 495-513
Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition
Danquah, Cynthia A., Kakagianni, Eleftheria, Khondkar, Proma, Maitra, Arundhati, Rahman, M., Evangelopoulos, Dimitrios, McHugh, Timothy D., Stapleton, Paul, Malkinson, John, Bhakta, Sanjib and Gibbons, Simon 2018. Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition. Scientific Reports. 8 (1150). https://doi.org/10.1038/s41598-017-18948-w
Anti-Staphylococcal Calopins from Fruiting Bodies of Caloboletus radicans
Tareq, F. S., Hasan, C. M., Rahman, M., Hanafi, M. M., Ciacchi, L. C., Michaelis, M., Harder, T., Tebben, J., Islam, M. T. and Spiteller, P. 2018. Anti-Staphylococcal Calopins from Fruiting Bodies of Caloboletus radicans. Journal of Natural Products. 81 (2), pp. 400-404. https://doi.org/10.1021/acs.jnatprod.7b00525
Application of computational methods in isolation of plant secondary metabolites
Rahman, M. 2018. Application of computational methods in isolation of plant secondary metabolites. in: Sarker, Satyajit and Nahar, Lutfun (ed.) Computational Phytochemistry Elsevier.
Anti-MRSA Activity of Oxysporone and Xylitol from the Endophytic Fungus Pestalotia sp. Growing on the Sundarbans Mangrove Plant Heritiera fomes
Nurunnabi, Tauhidur Rahman, Nahar, Lutfun, Al-Majmaie, Shaymaa, Mahbubur Rahman, S. M., Sohrab, Md. Hossain, Billah, Md. Morsaline, Ismail, Fyaz M.D., Rahman, M., Sharples, George P. and Sarker, Satyajit D. 2017. Anti-MRSA Activity of Oxysporone and Xylitol from the Endophytic Fungus Pestalotia sp. Growing on the Sundarbans Mangrove Plant Heritiera fomes. Phytotherapy Research. 32 (2), pp. 348-354. https://doi.org/10.1002/ptr.5983
Antimicrobial resistance and synergy in herbal medicine
Mundy, Lorna, Pendry, Barbara and Rahman, M. 2016. Antimicrobial resistance and synergy in herbal medicine. Journal of Herbal Medicine. 6 (2), pp. 53-58. https://doi.org/10.1016/j.hermed.2016.03.001
Antibacterial constituents of Neohyptis paniculata
Rahman, M. and Gibbons, Simon 2015. Antibacterial constituents of Neohyptis paniculata. Fitoterapia. 105, pp. 269-272.