Commercial peat extraction

Commercial peat extraction usually for energy or horticulture, physically removes peat from the ground (see below), along with its stored carbon, at a rate which substantially exceeds the original rate of deposition and accumulation. In the UK, commercial extraction is largely but not exclusively restricted to lowland raised mires (see Definitions Briefing Note 1) which are the least abundant of the UK’s bogs, occupying an area 77% smaller than the area covered by blanket bogs (JNCC 2008).

Natural rates of peat accumulation are less than 2 mm per year, and are outpaced by modern extraction methods that typically remove 100x that depth each year.

Blanket bog (see Definitions Briefing Note 1) is less commonly extracted commercially, but the habitat impact may arguably be even greater where it is extracted because the rate of blanket peat accumulation can be less than half that of raised bogs, while the accumulated peat deposit is invariably much thinner and so the resource may be exhausted much sooner. There may also be consequences for drinking-water supplies (see below).

Despite efforts being made towards sustainable management and post-harvesting restoration, commercial peat extraction in its current guise can only be seen as a type of extractive mining rather than a form of sustainable harvesting. This is because regrowth of peat is too slow to support repeat commercial extraction on any meaningful timescale.

Commercial fuel peat may be obtained using standard peat milling techniques which...
Fuel peat is classed by the EU as a fossil fuel

Repeatedly strip off thin layers of loosened peat (see below), or may be extracted using such techniques as 'sod cutting' and 'sausage extraction'. In the UK, fuel peat is almost exclusively extracted commercially from blanket bogs. Although it has been claimed that such fuel peat should be classed as a sustainable biofuel, the EU has officially defined peat as a fossil fuel.

In the UK, peat is in demand largely as a horticultural growing medium and soil conditioner, and its use is increasing despite increasing take-up of alternatives to peat because the whole horticultural and gardening sector continues to expand. **The UK Government has meanwhile stated its ambition for the horticultural sector to end peat use by 2030 through the development of alternative, sustainable, growing media.** This ambition, combined with the fact that a number of planning consents have already reached the end of their permitted life or will do so in the coming years, means that there is a significant ongoing need for effective restoration management of these former peat workings. To be successful, such management must address the impact of current commercial extraction methods on the peat bog system.

<table>
<thead>
<tr>
<th>Extraction methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of acrotelm</td>
</tr>
<tr>
<td>The current most widespread method of commercial extraction is surface milling for horticultural peat. This entails removal of the acrotelm, with its living vegetation, to expose the mass of the waterlogged catotelm peat deposit (see Biodiversity Briefing Note 2) beneath. An extensive drainage system is then installed across the site (above). Such site preparation means the loss of almost all biodiversity, all surface pattern and loss of active condition with its associated capacity for resilience (See Biodiversity Briefing Note 2 and Climate Change Briefing Note 10). It also results in a radical change in the hydrology of the site. Loss of the acrotelm and installation of drains together result in a number of effects (see Drainage Briefing Note 3) including subsidence of the bog surface and loss of carbon through oxidation, POC and DOC.</td>
</tr>
<tr>
<td>Removal of 200mm per year</td>
</tr>
<tr>
<td>The drains separate the peat mass into long 'milling fields', from which several thin layers of peat are then stripped during a year, amounting to around 200 mm per year. This bulk removal of the peat in the form of the industrial crop represents both loss of carbon and loss of the peat archive. The latter is lost forever because it recorded a particular set of moments in time which cannot be repeated. In the case of carbon, the net result of cutting and restoring a bog will be a loss of carbon compared to leaving the bog in its natural uncut state.</td>
</tr>
<tr>
<td>Permanent loss of peat archive</td>
</tr>
<tr>
<td>Target to end peat use by 2030</td>
</tr>
<tr>
<td>The UK</td>
</tr>
<tr>
<td>Extraction may increase water treatment costs</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Restoration</td>
</tr>
<tr>
<td>Critical importance of different Sphagnum species in rate of restoration</td>
</tr>
<tr>
<td>Sphagnum species typical of ridges and hummocks are more effective</td>
</tr>
<tr>
<td>Terrestrialisation vs Paludification</td>
</tr>
<tr>
<td>Loss of the peat archive is irrevocable</td>
</tr>
<tr>
<td>Importance of starting conditions, especially peat depth</td>
</tr>
</tbody>
</table>
Areas at risk

Any areas that are licensed for peat extraction and any surrounding hydrologically connected areas. These may include raised mires, blanket mires and even fens.

Other benefits from addressing this issue

Restoration of the acrotelm and associated active bog vegetation will preserve the remaining carbon store and encourage the long term carbon sink. Water quality downstream will improve as the DOC levels in bog outflow decrease and a range of bog biodiversity will also be restored.

Gaps in Knowledge

Identified gaps are:

- The length of time to full recovery of 'active' bog (likely to be site specific).
- Optimal restoration methods, particularly in relation to the interplay between terrestrialisation of water bodies (through creation of shallow lagoons across the restoration site) versus the paludification of the peat body (through the blocking of adjacent drains and seeding of bare peat surfaces).
- Potential for *Sphagnum* farming on agriculturalised peat soils.

Practical Actions

Practical actions:

- Encouragement towards the use of alternative sustainable growing media.
- Further development of restoration techniques for milled peat sites, particularly building on research in the UK, Canada and Germany, in partnership with industry.
- Research into the commercial potential for Sphagnum farming on agriculturalised peat soils.

More Information

Underpinning scientific report:
- http://www.uel.ac.uk/erg/PeatandCarbonReport.htm (high resolution: downloadable in sections)

IUCN UK Peatland Programme:

Natural England Uplands Evidence Review:

Scottish Natural Heritage Report on peat definitions:

Peatland Action:

This briefing note is part of a series aimed at policy makers, practitioners and academics to help explain the ecological processes that underpin peatland function. Understanding the ecology of peatlands is essential when investigating the impacts of human activity on peatlands, interpreting research findings and planning the recovery of damaged peatlands.

These briefs have been produced following a major process of review and comment building on an original document: Lindsay, R. 2010 ‘Peatbogs and Carbon: a Critical Synthesis’ University of East London. published by RSPB, Sandy. http://www.rspb.org.uk/Images/Peatbogs_and_carbon_tcm9-255200.pdf, this report also being available at high resolution and in sections from: http://www.uel.ac.uk/erg/PeatandCarbonReport.htm
The International Union for the Conservation of Nature (IUCN) is a global organisation, providing an influential and authoritative voice for nature conservation. The IUCN UK Peatland Programme promotes peatland restoration in the UK and advocates the multiple benefits of peatlands through partnerships, strong science, sound policy and effective practice.

We are grateful to Scottish Natural Heritage, Natural England, Natural Resources Wales, the Forestry Commission RSPB Scotland and the Peter de Haan Charitable Trust for funding support.

Richard Lindsay, Richard Birnie, Jack Clough
Version Date: 5th November 2014