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Abstract 

Background: The present study investigated whether prochlorperazine affects 

vestibular-ocular reflex (VOR) and vestibulo-perceptual function. Methods: We 

studied 12 healthy naïve subjects 3 hours after a single dose of oral prochlorperazine 

5mg in a randomised, placebo-controlled, double-blind, cross-over study in healthy 

young subjects. Two rotational tests in yaw were used: 1) a Threshold task 

investigating perceptual motion detection and nystagmic thresholds (acceleration 

steps of 0.5deg/s/s) and 2) Suprathreshold responses to velocity steps of 90deg/s in 

which vestibulo-ocular (VO) and vestibulo-perceptual (VP) time constants of decay, 

as well as VOR gain, were measured. Results: Prochlorperazine had no effect upon 

any measure of nystagmic or perceptual vestibular function compared to placebo. This 

lack of effects on vestibular-mediated motion perception suggests that the drug is 

likely to act more as an antiemetic than as an anti-vertiginous agent.  

 
Introduction 

Acute vestibular disorders induce severe vertigo usually associated with nausea and 

vomiting. Relief of these symptoms is the first task for the clinician. In many 

countries including the United Kingdom, prochlorperazine is perhaps the drug most 

commonly prescribed in the acute scenario [Patka et al., 2011] and the British 

National Formulary (“BNF”) lists its indications as “severe nausea, vomiting, vertigo, 

labyrinthine disorders [JointFormularyCommittee, 2012]. Prochlorperazine 

suppresses vomiting by modulating messages from the vestibular system to the 

vomiting centres at the chemo-receptor trigger zone (CTZ) [Yang and Neff, 1974] yet 

any anti-vertiginous effect is unproven. 

 The hypothesis of the study was that oral prochlorperazine modulates 

vestibular-motion (ocular reflex and perceptual) signals. This is important to try to 

establish if the drug beneficial effects is due to action on the vestibular system per se 

i.e. truly anti-vertiginous. If prochlorperazine has no effect on vestibular parameters 

one would have to conclude that the mechanism of action of the drug is only anti-

emetic. Significant suppression of vestibular responses by prochlorperazine (our 

primary outcome) would also impact the reliability of clinical testing in acute 

vestibular patients taking the drug. As many vertiginous patients included in clinical 

research projects are under the effects of this drug, the findings in our study may 
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clarify if some of the vestibulo-ocular and vestibulo-perceptual abnormalities detected 

acutely in patients may be due to the effects of the drug rather than the vestibular 

lesion itself. In particular, vestibulo-perceptual time constants are particularly 

shortened in acute vestibular neuritis patients and it was suggested that this 

represented a cortical ‘shut down’ with a net anti-vertiginous effect [Cousins et al., 

2013]. However, the possibility that this perceptual effect was drug induced was not 

directly investigated. We now address these questions as a double-blind, randomised, 

cross-over, placebo controlled, non-clinical drug trial on healthy subjects.  

 

Methods 

12 healthy naïve, right-handed subjects (aged 19-34 years, mean 22.7 years, 6 

females), verified by clinical history, participated and gave signed consent. The study 

was approved by the local ethics committee. The number of subjects included was 

based on previous experiments using this vestibular methods in normal subjects, as in 

the current study [Kyriakareli et al., 2013].  

 

Prochlorperazine and Placebo 

The local hospital pharmacy supplied prochlorperazine as the brand “Stemetil” as a 

single 5mg unmarked film-coated tablet in an unremarkable bottle (Stemetil 5mg 

tablets are bioequivalent to prochlorperazine 5mg tablets (MHRA guidelines, 

PL17907/0072)). The Placebo (indistinct lactose) was issued identically. A computer 

generated randomisation list was unknown to the authors. The 5mg dose was chosen 

as it is the BNF [JointFormularyCommittee, 2012] starting oral recommended dose 

(3mg for the buccal preparation). 

 Maximum potency of a 5mg stemetil tablet (Bristol Laboratories Limited, 

UK) is achieved after 3.1 hours (MHRA, PL17907/0072). Testing was performed 3.0 

hours after taking the tablet, at the same time of day for each subject and all were 

asked to avoid caffeine. Testing took approximately 40 minutes and conducted in two 

sessions separated by one week (i.e., cross-over design).  

 

Experimental Protocol 

Subjects sat in a vibration-free Barany Chair (Contravez Inc) with head restrained by 

a chin rest and in complete darkness. White noise was amplified through two speakers 
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fixed to the chair behind the head to mask any surroundings sound clues that may 

indicate rotation.  

Given that the result of the study could be related to drug-induced changes to 

alertness [Nigam et al., 1985], we performed a simple reaction time test immediately 

before rotational testing: pressing a button as fast as possible with the thumb of the 

dominant hand upon hearing a loud beep. Mean reaction time was calculated from 5 

trials.  

 

Vestibular Tests 

Two tests were performed; a vestibular threshold motion detection task and a supra-

threshold task in which vestibulo-ocular and perceptual time constants were 

measured. The order of these tests was randomised. A detailed explanation of the 

measurements and analysis is provided elsewhere [Cutfield et al., 2011; Okada et al., 

1999]. Below summarises the methods in brief: 

 

Vestibular threshold test 

The chair rotated about the yaw plane (i.e., horizontally), increasing in velocity in 

steps of 0.5 deg/s2 every 3 seconds. Subjects were rotated in total ten times, 5 times to 

the left and 5 times to the right in random order. A one minute rest was given between 

each rotation.  

Subjects held a two button box controller with both hands, pressing the left 

button to indicate a perceived leftward rotation and the right button when they 

perceived a rightward rotation. Each subject was given an identical instruction to 

press the right/left button as soon as they felt motion, and to not press any button if 

they had any doubt about motion or direction. The time to button press indicates the 

vestibulo-perceptual threshold (Figure 1A), which can be expressed as either time (s) 

or chair velocity (deg/s).  

Eye movements were simultaneously captured through electro-oculography 

(EOG) sampled at 250 Hz. EOG signals were passed through a low-pass filter (cut-off 

30 Hz) prior to analysis. The nystagmic or vestibulo-ocular threshold i.e., onset time 

of nystagmus, was obtained from the raw eye movement trace and a differentiated and 

de-saccaded eye movement trace (see [Cousins et al., 2013; Okada et al., 1999] for 

further technical details).   

An average perceptual and eye movement onset time was obtained.  



 5

 

Suprathreshold vestibular task 

The chair was rapidly accelerated (1s) in the yaw plane to a constant velocity of 90°/s 

using a rotational step stimulus [Okada et al., 1999]. The velocity was constant until 

the nystagmus had stopped and never less than 60s. A total of 4 rotations, two in each 

direction, and four stopping responses were obtained. The direction order was 

randomised.    

Subjects signalled their perceived or subjective angular velocity by turning a 

tachometer wheel with their right hand at the onset of perceived rotation in either 

direction (onset and stopping responses). Instructions were given to subjects to turn 

the wheel as fast as comfortably possible initially on chair acceleration/deceleration 

for the first couple of seconds. From then on they should slow down the wheel turning 

congruently with their perceived angular velocity until they no longer felt rotating, at 

which point they should stop turning the wheel. All subjects turned the wheel in the 

direction of actual motion. An output voltage proportional to the angular velocity of 

the wheel was digitally sampled at 250 Hz. An average waveform was normalised for 

size variations between subjects; accordingly amplitude units are arbitrary and hence 

not considered further herewith.   

Eye movements were simultaneously captured with EOG sampled at 250 Hz 

and passed through a low-pass filter (cut-off 30 Hz) prior to analysis. The EOG 

signals were displayed raw and also differentiated, de-saccaded and visible artefacts 

removed (i.e., blinks). An averaged, calibrated and normalised in amplitude slow 

phase eye movement trace was obtained for each subject.  

Analysis of tachometer-wheel (vestibulo-perceptual) and slow phase eye 

movement (vestibulo-ocular) supra-threshold responses (Figure 1B) was the average 

of the combined 8 accelerations/decelerations as right and left rotations produced 

similar responses. The duration of the differentiated slow phase nystagmic response 

and of the perceptual responses, and the (normalised) Area under Curve was obtained. 

Also, an exponential was fitted to the perceptual and slow phase eye velocity 

movements attaining the time constant of decay of the vestibulo-ocular and vestibulo-

perceptual responses; in this way the ocular and perceptual velocity storage 

mechanisms are assessed [Bertolini et al., 2011; Shaikh et al., 2013]. The time 

constant was derived from the best fit exponential line by visual overlap of a 

computer generated curve and response curve and high correlation coefficient (r) 
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(Figure 1C). This measure is amplitude independent. Gain of the slow phase eye 

movement response (VOR) was calculated, defined as peak eye velocity / peak 

stimulus velocity (90 deg/s). 

 

Statistical Analysis 

Data analysis of responses was performed by two blinded examiners. An unblinded 

statistician compared the responses between examiners and performed all statistics 

(J.G). Mixed ANOVAs with factors: drug, order, examiner were employed as well as 

paired t-tests for specific investigations (reaction time test, examiner effect, direction 

of rotation).  Significance level was set as double tailed p<0.05. 

 

Results 

The two examiners analyses of rotational responses were similar and no interaction 

between examiner and drug effect was found. The mean from the two blinded 

examiners’ analyses was therefore used.  

Blinded participants were unable to distinguish between the two tablets and 

none experienced an adverse response. Oculomotor recordings from one subject 

(Subject 7) were lost.     

Mean reaction time was very similar and not significantly different between 

prochlorperazine (0.25s) and placebo (0.23s).  

 

Vestibulo-ocular and vestibulo-perceptual threshold tasks  

Upon perceiving angular movement, all subjects pressed either the right or left button 

as instructed. On three occasions, different subjects pressed the incorrect button for 

direction and this response was excluded (once on placebo). Nystagmic thresholds 

were attained quicker than perceptual thresholds, as observed in previous research 

[Cousins et al., 2013]. There was no significant difference between leftward and 

rightward rotations. 

As illustrated in figure 2, nystagmic threshold for prochlorperazine was 6.3s 

(S.E.M + 0.24) and placebo 6.7s (S.E.M + 0.2) from the onset of rotation, 

corresponding to a mean chair rotational velocity of 4.9 and 5.7 deg/s respectively. 

Perceptual threshold for prochlorperazine was 10.0s (S.E.M + 1.17) and placebo 

10.23s (S.E.M + 1.18), which correspond to a mean chair rotational velocity of 11.0 
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and 11.8 deg/s respectively. ANOVA showed no drug or order effect for any measure 

of nystagmic or perceptual threshold during the vestibular motion detection task.    

 

Vestibulo-ocular and vestibulo-perceptual supra-threshold task 

During rotation all subjects turned the tachometer wheel in the direction of 

movement, always stopping wheel rotation before 60s. Upon stopping the chairs’ 

rotation, all subjects turned the wheel toward the opposite direction reflecting a 

perceived change in movement direction. There was no significant difference between 

leftward and rightward rotations.  

Shown in figure 3, Nystagmic duration for prochlorperazine was 39.5s (S.E.M 
+ 1.28) and placebo 42.5s (S.E.M + 1.19). Nystagmic time constant for 

prochlorperazine was 13.85s (S.E.M + 0.76) and placebo 14.65s (S.E.M + 0.74). 

Nystagmic area under Curve for prochlorperazine was 51.9 degrees (S.E.M + 15.0) 

and placebo 51.6 degrees (S.E.M + 9.99). VOR gain for prochlorperazine was 0.45 

and placebo 0.52. Perceptual duration of rotation for prochlorperazine was 26.5s 

(S.E.M + 2.81) and placebo 31.43s (S.E.M + 3.27). Perceptual time constant for 

prochlorperazine was 15.02s (S.E.M + 1.64) and placebo 16.62s (S.E.M + 1.92). 

Perceptual area under Curve for prochlorperazine was 70.94 arbitrary units (a.u.) 

(S.E.M + 10.57) and placebo 82.06 a.u. (S.E.M + 11.36). 

 ANOVA showed no drug or order effect on any measure of nystagmus or 

motion perception i.e., there was no difference between prochlorperazine and placebo.   

 

Discussion 

We found no significant effects of prochlorperazine upon any measure of ocular or 

perceptual function.  

 

Vestibular motion detection – threshold task 

The vestibular motion detection technique used has previously shown elevated 

bilateral vestibulo-ocular and vestibulo-perceptual thresholds in acute unilateral 

vestibular neuritis [Cousins et al., 2013; Cutfield et al., 2011]. One pending question 

was whether the anti-vertiginous drugs some of these patients received (usually 

prochlororperazine in the UK) played any role in this bi-directional threshold 

elevation. This would make sense as ideally a vestibular suppressant drug should 

elevate vestibular thresholds, in particular perceptual. The present results attest 
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against this possibility and hence, the bilateral threshold elevation observed in acute 

vestibular neuritis, is likely the result of the reduced signal-to-noise ratio following 

the vestibular loss as postulated by Cousins et al. [Cousins et al., 2013].  

 

Vestibular velocity storage mechanism – suprathreshold task 

The normal prolongation of vestibular-ocular and perceptual time constants to values 

of 13-16s (i.e. double those of the vestibular nerve time constant [Ramat and 

Bertolini, 2009] is due to a central integrator known as ‘velocity storage’ [Raphan et 

al., 1979].  Professional dancers, figure skaters and jet fighter pilots [Cohen et al., 

2003] show reduced vestibular time constants due to a process of vestibular 

habituation thought to involve velocity storage processing. For this reason, we 

expected that any anti-vertiginous or vestibular suppressant effects (as these drugs are 

often referred to) of prochlororperazine would involve the velocity storage 

mechanism, presumably shortening vestibular nystagmic and/or perceptual time 

constants. However, we found no effect of prochlorperazine on the time constants of 

decay of the vestibulo-ocular or vestibulo-perceptual post-rotational responses or the 

gain of the VOR. Contrastingly, baclofen, a GABA-B agonist, reduces the vestibular 

time constant [Dai et al., 2006], whereas promethazine (a drug with antihistaminic 

H1/anticholinergic properties)  has no effect [Cohen et al., 2003].    

 

Prochlorperazine reduces vomiting by inhibiting dopamine (D2) receptors 

(Yang and Neff 1974). As we found no effect of prochlorperazine on vestibular 

function tests, and given that the primary mechanism of action of prochlorperazine is 

as a dopamine antagonist, our results suggest that dopaminergic involvement in the 

vestibular system is small. Indeed, only a small number of dopaminergic neurones can 

be found in the medial vestibular nucleus (MVN) of rats [Cransac et al., 1996].  

 

Study limitations 

Although the current experiment was performed in a young cohort, the responses 

were consistent with those of older adults, age-matched to vestibular neuritis patients 

[Cousins et al., 2013]. In addition, we used healthy subjects as opposed to patients 

who might have a different response to prochlorperazine. However, our past 

investigations show that patients taking prochlorperazine respond within the same 

range to patients who are not on the drug during the same vestibular tests used here 
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[Cousins et al., 2013]. Still, the drug effects in patients would need to be specifically 

studied.     

 

Conclusions 

Whilst oral prochlorperazine is an accepted therapy for vomiting and nausea, it seems 

to have no effect on vestibular motion detection or on the vestibular velocity storage 

mechanism (ocular and perceptual). Therefore it would seem to offer little relief for 

unwanted vestibular-mediated motion feelings (vertigo) in dizzy patients. 

Prochlorperazine is unlikely to affect clinical assessments of vestibular function 

(nystagmic or perceptual) in dizzy patients, but it has to be acknowledged that our 

study was only conducted in normal subjects. The beneficial effects of 

prochlororperazine, and perhaps related drugs, may be due to anti-emetic action.  

Higher doses of this drug may well have an effect on vestibular function but clinical 

experience and pharmacological studies [Nigam et al., 1985] indicate that, at higher 

doses, general CNS effects, alertness and cognitive in particular, would be very 

difficult to disentangle from true central vestibular effects.  
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Figure 1 (A) Example response to a chair rotation and calculations of nystagmic and 

perceptual motion detection from the raw traces (B) Wheel tachometer output and Eye 

movements (VOR) (C) Example fitted exponential curve and time constant for the 

perceptual vestibular time constant (arbitrary units).  

 



 12

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Mean vestibulo-ocular and vestibulo-perceptual thresholds and SEM for 

Placebo (grey) and Prochlorperazine (striped). There were no significant differences 

between prochlorperazine and placebo. 
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Figure 3: Mean and SEM for duration, time constant, VOR gain and Area under 

Curve from vestibulo-ocular (nystagmic) and vestibulo-perceptual (wheel tachometer) 

responses for Placebo (grey) and Prochlorperazine (striped). There were no significant 

differences between prochlorperazine and placebo.  

 

 

 

 

 

 

 

 

 

 


