Emerging horizons for tick-borne pathogens: from the "one pathogen-one disease" vision to the pathobiome paradigm

Muriel Vayssier-Taussat1*, Maria Kazimirova2, Zdenek Hubalek3, Sándor Hornok4, Robert Farkas4, Jean-François Cosson1, Sarah Bonnet1, Gwenaël Vourch5, Patrick Gasqui5, Andrei Daniel Mihalca6, Olivier Plantard7, Cornelia Silaghi8, Sally Cutler9, Annapaola Rizzoli10

1: INRA, UMR BIPAR, INRA, ANSES, ENVA Maisons-Alfort, France
2: Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
3: Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
4: Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
5: INRA, UR 346 Epidémiologie Animale, Saint Genès Champanelle, France
6: University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, department of Parasitology and Parasitic Diseases, Cluj-Napoca, Romania
7: INRA, UMR 1300 BioEpAR, Nantes, France
8: National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse-Faculty, University of Zurich, Zürich, Switzerland
9: University of East London, School of Health, Sport and Bioscience, London, UK
10: Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Trento, Italy

Key words: *Ixodes ricinus*, emerging diseases, next generation sequencing, new paradigm, pathobiome, vector competence, co-infections, zoonoses, unknown pathogens.
Abstract

Ticks as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human, animal health in Europe. Recent application of new technology revealed the complexity of the tick microbiome that might impact upon its vectorial capacity. Appreciation of these complex systems is expanding our vision of tick-borne pathogens leading us to evolve a more integrated view that embraces the “pathobiome” representing the pathogenic agent integrated within its abiotic and biotic environments.

In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of research approach for the future in order to efficiently prevent and control the threat posed by ticks.
Recent application of next generation sequencing technology revealed the complexity of the tick microbiome that might impact upon its vectorial capacity and consequently affecting the vector-reservoir host interactions. Appreciation of these complex systems is expanding our vision of tick-borne pathogens leading us to evolve a more integrated view that embraces the “pathobiome” representing the pathogenic agent integrated within its abiotic and biotic environments including other pathogens, commensals, or mutualists. In this review, we will explore how this emerging vision of tick-borne pathogens will revolutionize our understanding of tick-borne diseases which are a growing concern given their exponential increase since the discovery of the Lyme disease agent. We will discuss the implications in terms of research approach for the future in order to efficiently prevent and control the threat posed by ticks.

CURRENT STATE OF THE ART KNOWLEDGE OF TICK-BORNE PATHOGENS USING “CONVENTIONAL VISION”

Expanding horizons of Tick borne pathogens. In Europe, the most prevalent tick-borne disease in humans is Lyme borreliosis (LB), caused by a group of bacteria belonging to the *Borrelia burgdorferi* sensu lato group with at least 5 different species infecting humans in Europe [1]. Recently, *B. miyamotoi*, belonging to the more distantly related relapsing fever group, has been detected in patients in USA, Japan, Russia and The Netherlands [2-5] and is transmitted by the tick species involved in LB. Ticks can also be infected with other pathogens that might be transmitted to humans [6] (see Table 1). Amongst them, *Anaplasma phagocytophilum* is responsible for granulocytic anaplasmosis, Candidatus *Neoehrlichia* mikurensis has emerged as a cause of severe febrile illness in immunocompromised patients [7, 8], whilst rickettsiae of the spotted fever group are known (*R. monacensis*, *R. conorii*) or suspected (*R. helvetica*) to cause rickettsioses [9, 10]. Other bacterial pathogens such as *Francisella tularensis*, causing tularemia, and the Q fever agent *Coxiella burnetii* have also been detected in *I. ricinus*, but the direct role of this tick species in the epidemiology of these diseases is probably not significant [11, 12]. Humans may develop babesiosis following tick borne transmission of protozoans belonging to the genus *Babesia*, mainly *B. divergens*, however the virulence of additional members of this genus such as *B. venatorum* has recently been confirmed [13]. *B. microti*, an
emerging human tick borne pathogen in USA, has also been identified in ticks in Europe, with one single human case to date [14]. **Tick species also transmit arboviruses**, the tick-borne encephalitis virus being the most notorious in terms of public health in Europe [15, 16]. Beside TBEV, many tick-borne viruses are known to be transmitted by other ticks. Among them, Crimean-Congo haemorrhagic fever virus (CCHFV) is considered to be one of the major emerging disease threats spreading within the European Union following an expanding distribution of its main tick vector, the genus Hyalomma [17]. More anecdotally, Omsk virus, an endemic virus from rural regions in Siberia and transmitted by *Dermacentor* species, is expanding its range. This virus caused capillary damage responsible for the haemorrhagic manifestations [15]. Other European tick-borne viruses are less well established as causes of disease but case reports are emerging. Among them, Powassan virus, a member of the genus *Flavivirus*, has been recovered from the brains of patients following fatal infection [15]. Louping ill virus, also member of the genus *Flavivirus* causes encephalitis in sheep, while exposed humans developed asymptomatic infection [15].

An increasing number of new species, strains or genetic variants of other microorganisms are being detected in ticks, resulting in an ever-increasing list of (potential) pathogens capable of infecting livestock, companion animals and humans. However, it needs to be taken into account that a significant portion of these "new" species/genotypes are not truly emerging, but only newly detected. This increasing recognition of pathogen biodiversity is not generating answers, but instead raising rather complex questions regarding ecological cycles of pathogens, their polymicrobial cross-talk, and their influence upon infection mechanisms, clinical differential diagnosis and intervention opportunities.

Identification of microorganisms in ticks has been largely dominated by the use of conventional molecular approaches mostly using specific primers combined with (real-time) PCR, and less frequently by culture-dependent methods. However, pathogen detection in an arthropod is not sufficient to validate its vector competence. This entails use of vector competence studies to establish both the interaction of new or unexpected pathogen with ticks, and to evaluate the risk of exposure for both humans and animals. These types of studies require living ticks raised under controlled conditions. Because of their complex biological cycle and their feeding
biology, maintenance of tick colonies and their infection with micro-organisms is not easy. However, several methods have been successfully developed and used to infect hard ticks with pathogens, e.g. feeding ticks on infected animals, injecting pathogens through the cuticule, by using thin capillary tubes, and feeding ticks on infected blood through artificial or animal-derived membranes [18]. These methods have been successfully employed to validate vector competence for a number of tick-borne pathogens, including Lyme spirochaetes [19], A. phagocytophilum [20], Babesia sp. EU1 (or B. venatorum) [21] Bartonella sp. [22, 23] and Tick-borne encephalitis virus [24, 25]. However, for some established tick-borne pathogens such as Ca. N. mikurensis or R. helvetica (both of which currently lack any cultivable strain), the tick vector competence remains to be proven. These are consequently considered “de facto” tick-borne pathogens under more or less strong “epidemiological evidence”.

Diagnostic challenges posed by Tick borne Pathogens/Diseases. Given a clinical history of tick bites, Lyme borreliosis is the primary consideration, but in some this diagnosis remains elusive being unconfirmed by conventional serological tests [26]. People bitten by ticks can also be infected by tick-borne encephalitis virus (TBEV) causing severe encephalitis, which is readily diagnosed by serological tests [15]. TBE can be successfully prevented by active immunization, but no specific treatment is available [27]. As already mentioned, ticks are capable of transmitting the largest variety of pathogens amongst arthropod vectors, and pathogens other than the Lyme or tick-borne encephalitis agents might be involved in Tick Borne Diseases (TBD). Interestingly, the majority of those pathogens have been discovered during the last 20 years. The symptoms induced by those pathogens are often mild and non-specific (high fever, fatigue, body aches, chills…) and can be confused with symptoms caused by infection with other agents. This is probably the underpinning reason why these infections are poorly recognised in humans by medical practitioners despite their abundance in ticks and/or reservoir animals. A striking example is that of B. miyamotoi. This *Borrelia* species was first isolated from Japanese *Ixodes* ticks in 1995 whereby it was considered a non-pathogenic endogenous tick bacterium until the first human cases of *B. miyamotoi* infection were reported in Russia some sixteen years later [2]. Subsequently human infections have been described in the USA and
most recently in the Netherlands [3-5, 28]. Circulation of *B. miyamotoi* between *I. ricinus* and wild animals has been confirmed in other European countries such as France, Estonia, Poland and Switzerland [29], which has confirmed that the French genotype is identical to an isolate from a Dutch patient [30]. Despite this apparent absence of human cases of *B. miyamotoi* infections among these countries, this is likely to reflect the absence of serological or molecular tests for *B. miyamotoi* combined with the lack of knowledge of these bacteria among medical practitioners. Thus, it is likely that the absence of human infections is rather due to missed diagnoses than to an actual absence of infection.

Those patients bitten by ticks are additionally at risk for co-infection by several pathogens. For instance, Horowitz *et al* [31] described co-infection rates ranging from 2 to 5% for *Borrelia* species and *A. phagocytophilum* among patients with erythema migrans, the diagnostic hallmark for Lyme borreliosis. Co-infections between *B. afzelii* and *R. monacensis* were also identified in skin biopsy of erythema migrans patients in The Netherlands [32]. However, co-infections are rarely diagnosed in routine practice, alerting us to the problem that co-infection in humans a relevant, albeit understudied issue, with important implications for public health.

In consequence, people infected by pathogens other than Lyme borreliosis spirochaetes or TBEV, are rarely identified. In recent years, unexplained syndromes occurring after tick bites have became an increasingly important issue leading to considerable discord between scientists, patients and institutions of infectious disease.
THE TECHNOLOGY-DRIVEN REVOLUTION OF TICK BORNE PATHOGEN’S VISION:

From pathogen to pathobiome. Until now, most studies detecting pathogens in ticks have used assays able to assess only limited number of agents simultaneously [33, 34]. This is partly due to technological limitations making complete screens of microorganisms in their natural vector/reservoir populations out of reach using standard laboratory procedures. Within the last few years, the rapid development of NGS methods has revolutionized the research field of epidemiology and diagnosis of infectious diseases facilitating complete screening of pathogens within their hosts, discovery of new pathogens, or the detection of unexpected ones. NGS has recently been successfully used to identify the bacterial communities associated with *I. ricinus* [35-38] based on the amplification and sequencing of hyper-variable regions of the 16S rRNA encoding genes (metagenomic profile), revealing a highly diverse microbial community (108 genera representing all bacterial phyla). As expected, those approaches have allowed detection without *a priori* established tick-borne pathogens such as the *Borrelia, Anaplasma, Coxiella, Francisella* or *Rickettsia* genus. Among those genera, mostly known as pathogenic for vertebrates, whilst other species are considered as endosymbionts (e.g. the *Rickettsia*-endosymbiont of *I. scapularis*) [39] underscoring the challenge of differentiating between pathogens and endosymbionts. Adding further complexity, some authors consider *Rickettsia* species as endosymbionts that are transmitted vertically in arthropods, and only secondarily serve as pathogens of vertebrates [40]. For the *Coxiella* genus, the species *C. burnetii* is mostly considered as a vertebrate pathogen while numerous other *Coxiella* species have been found associated to ticks [41]. Phylogenetic analyses combined with experimental approaches suggested that these might also be considered as endosymbionts of ticks [11, 42]. Thus the pathogenic nature of *C. burnetii* could be rather an exception within the genus [43]. Beside the well-known vertebrate pathogenic species *F. tularensis* (occasionally found in ticks), *Francisella*-like-endosymbionts associated with *Dermacentor* spp. have been described but their potential pathogenic nature remains to be investigated [44]. The *Wolbachia* and *Arsenophonus* genera are also bacteria associated to arthropods (mostly insects) and influence reproduction and/or immunity of their hosts [45, 46]. They have also been found associated within ticks [47]. However, a recent study revealed that in *I. ricinus*, the finding of *Wolbachia* is a consequence of parasitism by a parasitoid wasp.
Ixodiphagus hookeri [48]. The role of Arsenophonus as tick endosymbionts has still to be demonstrated. Finally, the endosymbiont Midichloria mitochondrii was initially observed within tick cells (especially in ovarian cells of I. ricinus; [49]. Use of molecular probes specific for this alphaproteobacteria have demonstrated their presence in almost 100% of I. ricinus females derived from natural populations [50], but also in other tick species [51]. Furthermore, M. mitochondrii has recently been implicated as potential vertebrate pathogen [52].

Use of NGS technology will undoubtedly shed new lights on the intriguing bacterial communities associated with ticks [37]. The clear-cut boundaries between the so-called “vertebrate-pathogens”, “arthropod-pathogens” or “arthropod-symbionts” may thus fade into a more dynamic and complex vision of bacterial-vector-vertebrate communities. Better knowledge of the role of these bacteria could even constitute useful resources for developing anti-vectorial control measures.

Besides the known micro-organisms (either belonging to pathogens, endosymbionts or both), NGS also revealed that the majority of RNA/DNA sequences carried by ticks belonged to unknown micro-organisms. For instance, 80% of the viral nucleic sequences detected from tick extracts represented as-yet unidentified microorganisms (Vayssier-Taussat et al., unpublished data). Among these new viral sequences, we identified genera transmissible to humans and/or animals via arthropods, including Bunyaviridae (Nairovirus and Phlebovirus), Rhabdoviridae (Vesiculovirus) and Reoviridae (Coltivirus) (Vayssier-Taussat et al., unpublished data). A similar study undertaken by Lipkin et al. in the USA characterized the virome of different tick species. Powassan virus, a well-known human pathogenic tick-borne virus, and eight novel viruses belonging to nairovirus, phlebovirus and mononegavirus genera were identified among the three ticks assessed [53]. New viruses recently identified in ticks by NGS are listed in Table 2.

By having sight of the entire tick microbial community, we can identify that pathogens are intimately associated to the vast community of micro-organisms (including other pathogens) and that by elucidating their influence tick biology, pathogen persistence, transmission, and virulence justifies the need to shift from the study of isolated pathogens to the more integrated approach. Within this context, we define the “pathobiome” as representing the pathogen within its abiotic and biotic environment.
Taking into account the multifactorial pathobiome requires comprehensive knowledge of the microbial community comprising the pathobiome, the network of interactions between microbes and the biological relevance of these interactions.

Deciphering microbial interactions within the tick ecosystem

Microbial interactions have largely been considered on a one-to-one interaction level, where the infection by one pathogen influences the acquisition of and/or dynamics of infection by a second pathogen. However, interactions between sets of pathogens are conceivable whereby different pathogens interact within a network or through “cascade consequence” [55, 56]. In experimental studies, one can investigate how the presence of one pathogen may interfere with infection by another, however, this is not possible using pathobiome perspective where many pathogens and other micro-organisms are present, including those member that remain poorly understood. In such a scenario, use of population studies assessing dynamics of change through the probability of finding those pathogens together beyond that which could occur by chance. Seeking microbial congruence initially assesses this, even though this can also result from confounding factors that create statistical associations between pathogens, without true biological interactions. In population studies, longitudinal or time series data are useful for identifying pathogen associations, identifying whether the presence of one pathogen modify subsequent infection by another [57]. However, such studies are resource-intensive. An alternative is to run one-off cross-sectional studies, which are cheaper and less time consuming than longitudinal studies. Cross-sectional studies can easily be used to detect several pathogens and are especially appropriate in the case of emerging or poorly known pathogens or host species. In such cases, numerous approaches are available to detect pathogen associations. Multivariate analyses (e.g., PCA, FCA, DA, CoA) [58] will evaluate which pathogens tend to group together. However, statistical test associated with these analyses are usually not available [but see for example permutation methods, 59, 60]. A new modeling approach was develop, “the association screening approach” to detect the overall and more detailed multi-pathogen associations [61]. This method is quite powerful but would require over 1000 samples if we were to study over 10 micro-organisms. Strong methodological developments on robust network analytical methods have been made [62] and continue to evolve (e.g. in medicine: metabolic
pathways [63, 64], in computer science: peer to peer networks [65] or in social
science: scientific collaboration [66]). They also offer an attractive representation of
assessing dynamics of multiple pathogen relationships. They provide indices of
association such as connectance [67], nestedness [68] or betweenness [69]. However,
up to date, statistical tests regarding the networks parameters have rarely been used,
but developments in this field are promising.

Importance of the pathobiome concept to elucidate competence mechanisms:

Microbes present along with pathogens in the ticks may interfere with pathogen
transmission. For instance, Rickettsial endosymbionts are thought to alter
transmission of other rickettsial pathogens, as seen by the inverse relationship
between the infection prevalence of *R. rickettsii* (pathogen) and *R. peacockii*
(symbiont) in *Dermacentor andersoni* [47, 70]. Furthermore, the presence of
Coxiella-related symbionts in the salivary glands of *Amblyomma* ticks impairs
transmission of *Ehrlichia chaffeensis* [71]. In addition to symbionts, ticks are also
colonized by a natural bacterial microbiota mainly belonging to the Proteobacteria,
Firmicutes, and Bacteroides phyla [72]. It has also been demonstrated that these tick
microbiomes can interfere with pathogens. For example, when ticks were bred in a
sterile environment, the absence of microbiota altered gut integrity and the ability of *B.
burgdorferi* to colonize [72]. Microbiome alterations might also result in a modulated
immune response which might then interfere with pathogen survival and infection, as
shown for other arthropod vectors [73]. Thus taking into account the pathobiome
rather than the isolated pathogens is crucial to understand how pathogens are
transmitted and how they survive within ticks.
PATHOBIOME APPROACH FOR SURVEILLANCE, DIAGNOSIS AND PREVENTION OF TICK BORNE DISEASES

Surveillance and Diagnosis. Considering the vast number of potential tick borne pathogens that can result in disease, either alone or in association, there is an urgent need to develop methods that are capable to accommodate this diversity, but also provide insights into the biology of tick-borne pathogens. For instance, many tick-borne pathogens colonize blood (residing within either intra- or extracellular niches) of vertebrate hosts. Thus it makes sense to detect the presence of their DNA in the blood of infected human patients of animals. However, blood infection does not occur for all tick-borne pathogens. A notable exception is the Lyme spirochaete that does not stably infect blood of human hosts, therefore detection of DNA in the blood of patient bitten by ticks is unhelpful necessitating use of more specific samples (such as skin biopsies) or use of serological tests even though their specificity and sensitivity are not always optimal. Molecular identification of tick-borne pathogens has been mostly based on the use of specific primers combined with real-time PCR, which can only detect a selected and limited number of species simultaneously. To overcome these limitations, new tools enabling high-throughput monitoring of tick-borne pathogens were an urgent priority. Based upon NGS data on presence of tick-borne pathogens in ticks in different European geographical regions, we developed a microfluidigm system allowing multiple parallel real-time PCRs for TBD surveillance that might be adapted to diagnostic settings [74]. This has the unique ability to simultaneously analyze multiple pathogens (up to 48 different species) in the same sample. This new tool presents the major advantage and can be easily adapted to new or emerging situations as it is entirely possible to remove primers/probes sets in order to modify the panel of targeted pathogens. If developed by private companies, this approach will represent an important improvement for the diagnosis of TBD.

Vaccination. Given the vast number of pathogens/potential pathogens that could be transmitted by the same tick species, deployment of tick vaccines would be both smart and environmentally friendly alternative to protect human and animal population against tick-borne diseases. This novel approach for control of vector infestations and thus reducing subsequent pathogen transmission necessitates a deep understanding of microbial interactions within the tick. For that purpose, research on molecular interactions between ticks and pathogens as well as the
identification of suitable targets for vaccine development are major challenges for the implementation of new TBD control strategies [75]. Among these, target molecules playing key roles in vector capacity are particularly promising [76]. To date, the only commercially available anti-tick vaccine is based on the *R. microplus* midgut protein BM86, interfering with tick feeding and subsequent egg production [77]. However, thanks to technological advances for tick infection combined with improved resolution of molecular investigative methods, further promising candidates have recently been identified. These include tick proteins derived from *I. ricinus* [78, 79], *I. scapularis* [80], *Rhipicephalus microplus* [81, 82], as well as candidates common to several hard tick species [83]. Improving our understanding of molecular interactions between ticks and tick-borne pathogens is an essential prerequisite for conception of future generations of vaccines and for vectors and diseases control.
Conclusion

The tick pathobiome vision, thanks to powerful molecular and technological advancements offers now a new vantage point to understand tick-borne pathogens in a more holistic point of view.
Future perspective

Shifting the paradigm from pathogens to pathobiome will have many research consequences; the most important being 1) how to determine the significance of microorganisms revealed by next generation sequencing technology in human and/or animal idiopathic disease following tick bites; 2) to decipher the impact of complex microbial interactions between pathogens and/or other tick endogenous microorganisms that might influence pathogen transmission, persistence, virulence and evolution. Based upon this new knowledge, new research avenues will have to be followed to develop adequate strategies to better diagnose and combat tick-borne diseases.
EXECUTIVE SUMMARY

Current Knowledge on Tick-borne pathogens:

- An increasing number of “new” species, strains or genetic variants of microorganisms are being detected in ticks, resulting in an ever-increasing list of potential pathogens.
- This increasing recognition of pathogen diversity is raising complex questions regarding ecological cycles of pathogen, polymicrobial cross-talk, diagnosis and intervention opportunities.

The new vision:

- Next generation technology shed new lights on bacterial communities associated with ticks.
- The majority of DNA/RNA sequences carried by ticks belong to unknown microorganisms.
- Pathogens are intimately associated with the tick microbial community.
- This justifies the need to shift from the study of isolated pathogens to a more integrated pathobiome approach.

Future research directions in term of surveillance, diagnosis and prevention of tick borne diseases:

- New tools enabling high-throughput monitoring of tick-borne pathogens are an urgent priority
- Given the vast number of pathogens that could be transmitted by the same tick species, deployment of tick vaccines would be a smart and environmentally friendly alternative to protect human and animal population against tick borne diseases.
Acknowledgment:

The authors thank the community of enthusiastic scientists exploring new insights in ticks and tick-borne pathogens in Europe, specially the ones participating to Edenext project and the COST action Eurnegvec.
Table 1: The predominant tick species present in North hemisphere, the pathogens they transmit, associated diseases, animal hosts as well as animal reservoirs of the corresponding pathogens.

<table>
<thead>
<tr>
<th>Ticks species</th>
<th>Pathogens</th>
<th>Diseases (hosts)</th>
<th>Reservoirs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ixodes species</td>
<td>Borrelia burgdorferi sensu lato</td>
<td>Lyme Disease (human, cattle, dog, horse)</td>
<td>Rodent, bird, reptile</td>
</tr>
<tr>
<td></td>
<td>Borrelia miyamotoi</td>
<td>Recurrent fever</td>
<td>Rodent, bird</td>
</tr>
<tr>
<td></td>
<td>Anaplasma phagocytophilum</td>
<td>Granulocytic Anaplasmosis (Flu-like symptoms in human, cattle, goat, sheep, horse, dog, cat)</td>
<td>Wild ruminants, Rodent, bird</td>
</tr>
<tr>
<td></td>
<td>Babesia divergens</td>
<td>Babesiosis Human, cattle</td>
<td>Deer, cattle</td>
</tr>
<tr>
<td></td>
<td>Babesia microti</td>
<td>Babesiosis Human</td>
<td>Rodent</td>
</tr>
<tr>
<td></td>
<td>Babesia venatorum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Babesia capreoli</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coxiella burnetii</td>
<td>Q fever (human, goat, sheep…)</td>
<td>Rodent</td>
</tr>
<tr>
<td></td>
<td>Francisella tularensis</td>
<td>Tularemia (human, rodents sheep, goat, …)</td>
<td>Hare</td>
</tr>
<tr>
<td></td>
<td>Bartonella henselae</td>
<td>Bartonellosis (human)</td>
<td>Cat</td>
</tr>
<tr>
<td></td>
<td>Bartonella berkholffii</td>
<td>Bartonellosis (Dog, human)</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Tick-borne encephalitis Virus</td>
<td>TBE (human, dog)</td>
<td>Rodent</td>
</tr>
<tr>
<td></td>
<td>Candidatus Neoehrlichia mikurensis</td>
<td>Fever (human, dogs)</td>
<td>Rodent</td>
</tr>
<tr>
<td></td>
<td>Rickettsia helvetica (suspected)</td>
<td>Fever (human)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Rickettsia monacensis</td>
<td>Fever (Human)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Powassan virus</td>
<td>Fever, neurological signs (Human)</td>
<td>Rodent</td>
</tr>
<tr>
<td></td>
<td>Louping hill virus</td>
<td>Encephalitis (Human, sheep)</td>
<td>Mountain hare, sheep</td>
</tr>
<tr>
<td>Dermacentor spp.</td>
<td>Anaplasma ovis</td>
<td>Anaplasmosis (goat, sheep)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Babesia caballi</td>
<td>Babesiosis (horse)</td>
<td>Horse</td>
</tr>
<tr>
<td></td>
<td>Theileria/Babesia equi</td>
<td>Theileriosis (horse)</td>
<td>Horse</td>
</tr>
<tr>
<td></td>
<td>Babesia canis</td>
<td>Canine Babesiosis</td>
<td>Dogs</td>
</tr>
<tr>
<td></td>
<td>Rickettsia slovaca</td>
<td>TIBOLA/SENLAT (human)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Rickettsia raoultii</td>
<td>TIBOLA/SENLAT (human)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Anaplasma marginale</td>
<td>Bovine anaplasmosis (Cattle)</td>
<td>Cattle</td>
</tr>
<tr>
<td></td>
<td>Francisella tularensis</td>
<td>Tularemia (human, rodents sheep, goat, …)</td>
<td>Hare</td>
</tr>
<tr>
<td></td>
<td>Coxiella burnetii</td>
<td>Q fever (human, goat, sheep…)</td>
<td>Rodent</td>
</tr>
<tr>
<td></td>
<td>Omsk haemorrhagic virus</td>
<td>Haemorrhagic manifestations (Human)</td>
<td>Muskrat</td>
</tr>
<tr>
<td></td>
<td>Powassan virus</td>
<td>Fever, neurological signs (Human)</td>
<td>Rodent</td>
</tr>
<tr>
<td>Haemaphysalis spp.</td>
<td>Babesia spp.</td>
<td>Babesiosis (human, possibly cattle and dog)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Theileria spp.</td>
<td>Theileriosis (cattle)</td>
<td>Unknown</td>
</tr>
<tr>
<td>Hyalomma spp.</td>
<td>Theileria annulata</td>
<td>Theileriosis (Cattle)</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Theileria equi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crimean-Congo hemorrhagic Fever Virus</td>
<td>Hemorrhagic fever (human)</td>
<td>Rodent, bird?</td>
</tr>
<tr>
<td>Rhipicephalus sanguineus</td>
<td>Rickettsia conorii</td>
<td>Mediterranean spotted fever (human)</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Ehrlichia canis</td>
<td>Ehrlichiosis (dog)</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Anaplasma platys</td>
<td>Cyclic thrombocytopenia</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Babesia vogeli/canis</td>
<td>Canine Babesiosis</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Hepatozoon canis</td>
<td>Hepatozoonosis</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Babesia gibsoni</td>
<td>Canine Babesiosis</td>
<td>Dog</td>
</tr>
</tbody>
</table>
Table 2: New viruses recently identified in ticks by NGS.

<table>
<thead>
<tr>
<th>Viruses</th>
<th>Diseases</th>
<th>Tick species</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nairovirus (South Bay virus)</td>
<td>Unknown</td>
<td>I. scapularis</td>
<td>[53]</td>
</tr>
<tr>
<td>Blacklegged tick Phlebovirus (BTPV)</td>
<td>Unknown</td>
<td>I. scapularis</td>
<td>[53]</td>
</tr>
<tr>
<td>American dog tick Phlebovirus (ADTPV)</td>
<td>Unknown</td>
<td>I. scapularis/D. variabilis</td>
<td>[53]</td>
</tr>
<tr>
<td>Monongavirales-like virus</td>
<td>Unknown</td>
<td>I. scapularis</td>
<td>[53]</td>
</tr>
<tr>
<td>Phlebovirus (Heartland virus)</td>
<td>Severe febrile illness</td>
<td>A. americanum</td>
<td>[84]</td>
</tr>
<tr>
<td>Shibunji virus (New tick borne virus phlebovirus)</td>
<td>Unknown</td>
<td>Rhipicephalus spp.</td>
<td>[85]</td>
</tr>
</tbody>
</table>
References

Papers of special note have been highlighted as:

- Of interest

- First case of *B. miyamotoi* in Europe

- **illustrates the possible co-infection of human by tick-borne pathogens and their impact on illness severity**

- **first identification of tick microflora using a 16S approach**

Figure Legend:

Figure 1. The tick pathobiome concept.