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Abstract

Here we develop an option pricing method based on Legendre series expansion of the density function.

The key insight, relying on the close relation of the characteristic function with the series coefficients,

allows to recover the density function rapidly and accurately. Based on this representation for the

density function, approximations formulas for pricing European type options are derived. To obtain

highly accurate result for European call option, the implementation involves integrating high degree

Legendre polynomials against exponential function. Some numerical instabilities arise because of serious

subtractive cancellations in its formulation (96) in proposition 7.1. To overcome this difficulty, we rewrite

this quantity as solution of a second-order linear difference equation and solve it using a robust and stable

algorithm from Olver. Derivation of the pricing method has been accompanied by an error analysis. Errors

bounds have been derived and the study relies more on smoothness properties which are not provided

by the payoff functions, but rather by the density function of the underlying stochastic models. This

is particularly relevant for options pricing where the payoffs of the contract are generally not smooth

functions. The numerical experiments on a class of models widely used in quantitative finance show

exponential convergence.

Keywords: Legendre polynomials, Fourier series, characteristic function, European option pricing,

Olver algorithm

1. Introduction

In option pricing, Feynman-Kac formula [1] establishes a link between the conditional expectation

of the value of a contract payoff function under the risk-neutral measure and the solution of a partial

differential equation. In the research areas covered by this theorem, various numerical pricing techniques

can be developed. Existing numerical methods can be classified into three major groups: partial integro-

1Corresponding author
2Senior Lecturer

Preprint submitted to Elsevier March 21, 2017



differential equations methods, Monte Carlo simulations and numerical integration methods. Each of

them has its advantages and disadvantages for different financial models and specific applications. In this

paper, we concentrate on the last group for the pricing of European type option.

The point-of-departure for pricing European option with numerical integration techniques is the risk-

neutral valuation formula:

V (x, t0 = 0) = e−rTEQ[V (ST , T )|S0 = x] = e−rT
∫
R
V (y, T )f̃(y|x)dy (1)

with EQ the expectation operator under risk-neutral measure Q, St the underlying asset price at t

and T the option maturity. V (x, t) denotes the option value at t with x the state variable. f̃(y|x) is the

probability density function of ST given S0 = x and r the risk-free interest rate.

Unfortunately, for many relevant pricing processes, their probability densities are usually unknown.

On the other hand, the Fourier transform of these densities, i.e, the characteristic functions, are often

available. For instance, from the Levy-Khinchine theorem [2] the characteristic functions of Levy processes

are known. Or characteristic functions have been derived in the pure diffusion context with stochastic

volatility [3] and with stochastic interest rates [4]. Hence, the Fourier transform methods for option

pricing have been naturally considered by many authors (see [5] and references therein). Subsequently,

some new numerical methods are proposed. For example, The quadrature method (QUAD) method was

introduced by Andricopoulos et al [6], the Convolution method (CONV) was presented by Lord et al

[7]. A fast Hilbert transform approach was considered by Feng and Linetsky [8]. The highly efficient

Fourier-cosine series (COS) technique, based on Fourier-cosine series expansion of the density function,

was proposed by Fang and Oosterlee [9] and has generated other developments by Hurn et al [10] or by

Ding et al [11]. Recently, Necula et al [12] have employed the modified Gram-Charlier series expansion,

known as the Gauss-Hermite expansion, for the density function and obtained a closed form pricing

formula for European option.

In this manuscript, we consider an alternative and propose to expand the probability density function

f̃(y), restricted on a finite interval [a, b], using Legendre polynomials when the characteristic function is

known. For approximating non periodic function on a finite interval, among the class of basis functions,

it is usually recommended to use either Legendre polynomials or Chebyshev polynomials (see page 510

table A.1 in [13]). Legendre polynomial offers tractability property allowing to compute analytically

many quantities of interests. For example, Legendre polynomial has an analytical formula for its Fourier

transform as in (15), which is instrumental and used to recover the coefficients An in the series expansion of

the density function (26). The Fourier transform for Chebyshev polynomials does not have a simple closed

form and requires some numerical approximations (see discussion in [14]). Moreover the experiments show

this formula is numerically stable for large n. Generally, the classical Legendre series offers the simplest

method of representing a function using polynomial expansion means [15]. Also the recent analysis

by Cohen and Tan [16] shows Legendre polynomial approximation yields an error at least an order of

magnitude smaller than the analogous Taylor series approximation and the authors strongly suggest that
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Legendre expansions, instead of Taylor expansions, should be used when global accuracy is important.

Finally, polynomials are convenient to manipulate in general and we compute simply the European option

pricing formula by integrating the payoff against Legendre polynomial functions.

Adrien Marie Legendre, a French mathematician who discovered the famous polynomials, was never

aware of that how much it will be used in developing mathematics. This Legendre polynomial is being

used by mathematicians and engineers for variety of mathematical and numerical solutions. For example,

in physics, Legendre and Associate Legendre polynomials are widely used in the determination of wave

functions of electrons in the orbits of an atom [17, 18] and in the determination of potential functions

in the spherically symmetric geometry [19]. In numerical analysis, Legendre polynomials are used to

efficiently calculate numerical integrations by Gaussian quadrature method [20].

Legendre polynomials is not widely used in quantitative finance but not new. For example, Pulch et

al [21] consider the fair price of options as the expected value of a random field where the input volatility

parameter is written as a linear function of uniform random variable. The Polynomial chaos theory using

Legendre polynomial yields an efficient approach for calculating the required fair price. Or in [22], the

authors develop arbitrage free interest rate models for a family of term structures parametrized by linear

combinations of Legendre polynomials. Each polynomial provides a clear interpretation in terms of the

type of movements that they generate for the term structure (see also [23] and [24]).

To our knowledge, it is the first time that Legendre polynomials are used to expand the probability

density function of asset prices and option pricing. To recover rapidly and accurately the density function,

our key insight relies on the close relation of the characteristic function with the series coefficients of the

Legendre polynomials expansion of the density function (see our result in theorem 2.1). Based on this

representation for the density function, approximations formulas for pricing European type options are

derived. To obtain highly accurate result for European call option, the implementation involves integrat-

ing high degree Legendre polynomials against exponential function. Some numerical instabilities arise

because of serious subtractive cancellations in its formulation (96) in proposition 7.1. To overcome this

difficulty, we rewrite this quantity as solution of a second-order linear difference equation in proposition

(3.3). To solve this equation in a stable way, we use Olver’s algorithm which allows to evaluate these

quantities to machine accuracy. Then we develop an analysis to provide estimations of the errors. We

believe that a rigorous error estimate is of first importance because the accuracy of our expansion for-

mulas depends on the regularity of the density function. Once done, it brings confidence in the derived

expansion and sheds light on the needed assumptions (see our results in propositions 4.2, 4.3 and 4.5).

This paper is structured as follows. In section 2, we develop the series expansion of the density

function using Legendre polynomials. Based on this, we derive, in section 3, the formulas for pricing

European type options and propose a robust and stable procedure for the implementation. An error

analysis is presented in section 4. Some numerical experiments are given in section 5. The final section

concludes.

4



2. Series expansion of density function with Legendre polynomials

The objective is to estimate the density function f̃(y) using Legendre polynomials given its charac-

teristic function.

2.1. Generalized Fourier Series-Legendre Polynomials

The Legendre polynomials (Pn(t))n≥0 form a complete basis over the interval [−1, 1] and can be

defined, in term of power series, by

Pn(t) =
1

2n

bn2 c∑
k=0

(−1)kCknC
n
2n−2kt

n−2k (2)

with brc the floor function and Ckn = n!
k!(n−k)! the binomial coefficients [25, 26].

The Legendre basis polynomials can be generalized to cover an arbitrary interval [a, b] by the change

of variable t = (2x−(a+b))
(b−a) which leads to the following

Pn(x) =
1

2n

bn2 c∑
k=0

(−1)kCknC
n
2n−2k

[
(2x− (a+ b))

(b− a)

]n−2k
. (3)

Sturm-Liouiville theory guarantees the orthogonality of Legendre polynomials and it also shows that

we can represent functions on [a, b] as a linear combination of Legendre Polynomials. Thus for suitable

f(x) on [a, b] we have the generalized Fourier series

f(x) =
∞∑
n=0

AnPn

(
2x− (a+ b)

b− a

)
(4)

where {An}∞n=0 is a set of coefficients. To find each An, we use the orthogonality relation

∫ b

a

Pn

(
2x− (a+ b)

b− a

)
Pm

(
2x− (a+ b)

b− a

)
dx = δn=m

(b− a)

2m+ 1
(5)

and then multiply both sides of expression (4) by Pm

(
2x−(a+b)
b−a

)
and integrate to obtain

∫ b

a

f(x)Pm

(
2x− (a+ b)

b− a

)
dx =

∞∑
n=0

An

∫ b

a

Pn

(
2x− (a+ b)

b− a

)
Pm

(
2x− (a+ b)

b− a

)
dx (6)

= (b− a)
Am

2m+ 1
. (7)

so that

An =
2n+ 1

b− a

∫ b

a

f(x)Pn

(
2x− (a+ b)

b− a

)
dx (8)
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2.2. Approximate risk-netural probability density function using standard Fourier series

we briefly revise the definition of complex Fourier series [27, 26]. For a suitable function f(t) supported

on [−π, π], the complex Fourier series representation is given by

f(t) =
+∞∑

k=−∞

Bke
ikt, with Bk =

1

2π

∫ π

−π
f(t)e−iktdt. (9)

If we extend the series to support function with a finite range of [a, b], the complex Fourier series

expansion can be defined as:

f(x) =
∞∑

k=−∞

Bke
i( 2π
b−ax)k, with Bk =

1

b− a

∫ b

a

f(x)e−ik(
2π
b−ax)dx. (10)

The formula is achieved through use change of variables:

x =
b− a
2π

t+
a+ b

2
or t =

2π

b− a
x− π(a+ b)

b− a
(11)

Being given a probability density function f̃(x) and its characteristic function ϕ(u), these two functions

form a Fourier pair:

ϕ(u) =

∫
R
eiuxf̃(x)dx (12)

f̃(x) =
1

2π

∫
R
e−iuxϕ(u)du. (13)

A necessary condition for f̃(x) to be a probability density function is that f̃(x) → 0 as | x |→ ∞,

and therefore there is guaranteed to be an interval [a, b] such that for all x ∈ (−∞, a] ∪ [b,∞) it can be

asserted that f̃(x) < ε for any arbitrary small positive ε.

Let’s consider f(x) as the restriction of f̃(x) on [a, b]. We shall discuss the appropriate choice of [a, b] in

section 5.1.

From (4) and (10), f(x) can be expressed either in a complex Fourier series or a Legendre polynomials

series. As the aim of this paper is to apply Legendre polynomials for a pricing formula, we show how

one can precisely approximate f(x) with Legendre series and formulate the coefficients in the expansion

knowing the characteristic function. To achieve this, we use (10) in (8) and assume we can change the

order of integration to write

An =
2n+ 1

b− a

+∞∑
k=−∞

Bk

∫ b

a

Pn

(
2x− (a+ b)

b− a

)
ei2π(

xk
b−a )dx (14)

Through change of variables, x = b−a
2 t+ a+b

2 , and a closed-form expression for

∫ 1

−1
Pn(x)eiλxdx = in

√
2π

λ
Jn+ 1

2
(λ), λ ∈ C (15)

with Jν(z) Bessel function of first kind (see [28] p.217 and p.456), it comes

6



∫ b

a

Pn

(
2x− (a+ b)

b− a

)
ei2π(

xk
b−a )dx =

 in (b−a)
2 e

iπk(a+b)
b−a

√
2
kJn+ 1

2
(πk), k 6= 0,

(b− a)δn=0, k = 0.
(16)

and so

An =
2n+ 1√

2

∑
k 6=0

Bki
ne

iπk(a+b)
b−a

Jn+ 1
2
(πk)
√
k

+B0

√
2δn=0

 (17)

Knowing the characteristic function, we write

Bk = B̃k −Rk (18)

with

B̃k :=
1

b− a
ϕ

(
−2kπ

b− a

)
(19)

and

Rk :=
1

b− a

∫
R−[a,b]

f̃(x)e−i2π(
xk
b−a )dx. (20)

Rk is expected to be small and can be bound as

| Rk |≤
1

b− a

[∫ a

−∞
f̃(x)dx+

∫ +∞

b

f̃(x)dx

]
=

1

b− a

[
F̃ (a) + 1− F̃ (b)

]
. (21)

where F̃ (x) is the cumulative distribution function of f̃(x).

Finally, using (18), An can be written as

An =
2n+ 1√

2

∑
k 6=0

B̃ki
ne

iπk(a+b)
b−a

Jn+ 1
2
(πk)
√
k

+ B̃0

√
2δn=0

+RAn (22)

with

RAn = −2n+ 1√
2

∑
k 6=0

Rki
ne

iπk(a+b)
b−a

Jn+ 1
2
(πk)
√
k

+R0

√
2δn=0

 . (23)

Before summarising the result of the development above in the next theorem, we introduce a couple

of definitions and notation taken from [27]: a function f(x) is said to be piecewise smooth on the interval

[a, b] if either f(x) and its derivative are both continuous on [a, b], or they have only a finite number of

jump discontinuities on [a, b]. If x0 is a point of discontinuity of a function f(x) and if the right-hand

and left-hand limits exist, x0 is said to be a point of jump discontinuity. We set

fnk (x) = BkPn

(
2x− (a+ b)

b− a

)
ei2π(

xk
b−a ), x ∈ [a, b], k ∈ Z, n ∈ N. (24)
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and consider, for a given n ∈ N, the series of functions

+∞∑
k=−∞

fnk (x). (25)

Theorem 2.1. Let’s denote by f(x), the restriction of the probability density function f̃(x) on [a, b] large

enough such that f(a) = f(b) and ϕ(x) the characteristic function associated to f̃(x). Assume that f(x)

is a continuous piecewise smooth function and that the series (25) is uniformly convergent on ∈ [a, b] for

all n ∈ N. Then we have the following Legendre series representation

f(x) =
∞∑
n=0

AnPn

(
2x− (a+ b)

b− a

)
(26)

with An given in (22).

Proof. f(x), being continuous and piecewise smooth on [a, b], can be written as in (4) and (10) (see e.g

[27] and [25]). The uniform convergence of the series (25) allows to interchange the order of integration

in the expression of An in (14).

Remark 2.2. • The representation (26) allows to retrieve the density function accurately when the

characteristic function ϕ(x) is known by truncating the infinite sums in n of (26) and in k of (22)

and neglecting the terms RAn (see section 5 for illustrations).

• In quantitative finance, the probability density function f̃(x) of asset prices tends to be smooth in

general. When analytical formulas are available as for Black Scholes model in equation (79) and in

Merton jump diffusion model in equation (109), we observe that their density functions are infinitely

differentiable. The Malliavin calculus or the stochastic calculus of variations can be applied to the

study of existence and smoothness of density for the solution of a stochastic differential equation

(SDE) (see e.g [29] or [30]).

3. A new computational method for option pricing

3.1. Option pricing

Here, we show how to evaluate European style options using the asymptotic expansion of the density

function obtained previously. We denote the log-asset prices by

x := ln

(
S0

K

)
and y := ln

(
ST
K

)
, (27)

with St the underlying price at time t and K the strike price. The payoff for European options, in

log-asset price, reads

V (y, T ) = [α.K(ey − 1)]+ with α =

 1 for a call,

−1 for a put,
(28)
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and

V (y, T ) = 1αy≥0 with α =

 1 for a digital call,

−1 for a digital put,
(29)

In the following, we focus on the pricing formula for European call option and European digital

call option. The European put option and European digital put option prices can be deduced by parity.

Indeed, call/put and digital options are very popular in the financial markets for hedging and speculation.

They are also important to financial engineers as building blocks for constructing more complex option

products. For example, it is well-known that the price of European-type option with twice differentiable

payoff can be replicated model free by a static portfolio consisting of pure discount bond, at the money

European Call and put options and a continuum out of the money European Call and put options (see

e.g [31] and [32]). Moreover, pricing and hedging of digital options are challenging because of payoff

discontinuity (see discussions in remark 4.6 and [33]). So it is instrumental to be able to price these

options accurately in a robust way.

With (1), the European call price is given by

V (x, 0) = e−rTKE[(ey − 1)+] = e−rTK

∫ +∞

−∞
(ey − 1)+f̃(y|x)dy (30)

Since the density rapidly decays to zero as y → ±∞, we truncate the infinite integration range without

loosing significant accuracy to [a, b] ⊂ R and obtain the approximation

V1(x, 0) = e−rTK

∫ b

a

(ey − 1)+f(y|x)dy. (31)

In the second step, we replace f(y|x) by its Legendre series representation (26) to obtain the following

proposition

Proposition 3.1. Under the hypotheses of theorem (2.1), we obtain an approximation of (1) given by

the following Legendre polynomial pricing formula

V4(x, 0) = e−rT
N∑
n=0

AMn Vn (32)

where AMn and Vn are defined respectively by

AMn =
2n+ 1√

2

 M∑
k=−M,6=0

B̃ki
ne

iπk(a+b)
b−a

Jn+ 1
2
(πk)
√
k

+ B̃0

√
2δn=0

 (33)

Vn =


Kβ

[
e
a+b

2

∫ 1

α
eβtPn(t)dt− Pn−1(α)−Pn+1(α)

2n+1

]
for European call

Pn−1(α)−Pn+1(α)
2n+1 for European digital call

(34)

with α = a+b
a−b and β = (b−a)

2 .

9



Proof. For the European call price, we use the representation (26) of f(y|x), perform two truncations in

the infinite sums: One for n in (26) to N and an another one for k in (22) to [−M,M ] and neglect the

remaining term RAn in (23). Then we get an estimation of the price given by

V4(x, 0) = e−rTK
N∑
n=0

AMn

∫ b

a

(ey − 1)+Pn

(
2y − (a+ b)

b− a

)
dy. (35)

Without loss of generality, we suppose a << 0, b >> 0 and with a change of variable t = 2y−(a+b)
b−a ,

the last expression becomes

V4(x, 0) = e−rTK
N∑
n=0

AMn β

[
e
a+b

2

∫ 1

α

eβtPn(t)dt−
∫ 1

α

Pn(t)dt

]
. (36)

By using the Legendre polynomial property

(2n+ 1)Pn(t) = P
′

n+1(t)− P
′

n−1(t) (37)

and Pn(1) = 1, ∀n ≥ 0, we get

∫ 1

α

Pn(t)dt =
Pn−1(α)− Pn+1(α)

2n+ 1
(38)

The European digital call price is computed similarly.

Remark 3.2. • The computation of
∫ 1

α
eβtPn(t)dt in Vn for the European call price needs attention.

We provide an analytical formula in proposition (7.1). Its computation is straightforward for small

values of n. For n >> 1 several accuracy and stability issues arise because of rapid accumulation

of round-off errors [34, 35].

• The valuation for other contracts like asset-or-nothing options, gap options or standard power

options [36] can be computed similarly.

3.2. Alternate computational procedure

The computation of the Legendre pricing formula (32) is straightforward for small value of N by using

the expression for Vn in proposition (7.1). To obtain accurate pricing, we need to consider N,M >> 1.

M large does not have any implementation difficulty. However, for N >> 1, the computation of Vn

using (96) introduces instability and inaccuracy issues because of cancellations [35]. The objective in this

section is to provide an alternative computational procedure for Vn with machine accuracy.

Let’s write

Un =

∫ 1

α

eβtpn(t)dt (39)

10



Using integration by parts, we get

Un = Wn −
1

β

∫ 1

α

eβtp
′

n(t)dt (40)

with Wn = 1
β (eβ − eβαPn(α)).

With (37), it is easy to show

p
′

n(t) =

 2
||pn−1||2 pn−1(t) +

∑
i=0, 2i≤(n−3)

2
||p2i||2 p2i(t) for oddn ≥ 3,

2
||pn−1||2 pn−1(t) +

∑
i=0, 2i+1≤(n−3)

2
||p2i+1||2 p2i+1(t) for evenn ≥ 2

(41)

where ||pm||2 = 2
2m+1 , m ≥ 0.

Using (40) with (41), we then get

Un = Wn −
2(n− 1) + 1

β
Un−1 + Un−2 −Wn−2 (42)

given U0 and U1.

The next proposition summarizes the second-order linear difference equation for the computation of

Un:

Proposition 3.3. By posing Yn = Un − Wn, Yn satisfies the following second-order linear difference

equation

Yn−1 −
1

β
(2n+ 1)Yn − Yn+1 =

1

β
(2n+ 1)Wn. (43)

given Y0 and Y1.

The computation of Un or Yn using these forward recurrences is straightforward but it generates

instabilities and inaccuracies for large n. It is a well known issue as discussed in [37, 38, 39].

An excellent technique which evaluates Un in a stable way to machine accuracy is Olver’s method [37].

The approach consists to treat the difference equation as a boundary-value problem rather than using

initial-value technique. This rewrites the recurrence relation as a triple of recurrence relations, two of

which are evaluated forwards to an index greater than the desired N , the number of additional steps

required for a given accuracy being determined as part of the procedure. The third relation is then

evaluated by backward recurrence (see [37] for details).

4. Error analysis

First, let’s write the successive approximations introduced in the derivation of the pricing formula

(32).

V (x, 0) =

∫ ∞
−∞

V (y, T )f̃(y|x)dy = V1(x, 0) + ε1 (44)

with

V1(x, 0) =

∫ b

a

V (y, T )f̃(y|x)dy (45)
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and

ε1 =

∫
R−[a,b]

V (y, T )f(y|x)dy (46)

ε1 corresponds to an integral truncation error.

Using (26), it comes

V1(x, 0) =
∞∑
k=0

AkVk = V2(x, 0) + ε2 (47)

where Ak is defined in (8), Vk in (34) with

V2(x, 0) =
N−1∑
k=0

AkVk (48)

and

ε2 =
+∞∑
k=N

AkVk (49)

ε2 corresponds to the series truncation error.

By posing Ckm =
∫ b
a
Pk

(
2y−(a+b)
b−a

)
ei2π(

ym
b−a )dy, Ak is written as

Ak =
2k + 1

b− a

[
+∞∑

m=−∞
BmC

k
m

]
(50)

Using expression (48), we get

V2(x, 0) = V3(x, 0) + ε3 (51)

with

V3(x, 0) =
1

b− a

N−1∑
k=0

M∑
m=−M

Vk(2k + 1)BmC
k
m (52)

and

ε3 =

N−1∑
k=0

Vk(2k + 1)

b− a
∑

m∈Z−[−M,M ]

BmC
k
m (53)

ε3 represents another series truncation error.

Finally using (18), we have

V3(x, 0) = V4(x, 0) + ε4 (54)

with

V4(x, t) =
1

b− a

N−1∑
k=0

M∑
m=−M

Vk(2k + 1)B̃mC
k
m (55)

and

ε4 = − 1

b− a

N−1∑
k=0

M∑
m=−M

Vk(2k + 1)RmC
k
m (56)

ε4 represents another integral truncation error.

To summarize we obtain

V (x, 0) = V4(x, 0) + ε1 + ε2 + ε3 + ε4. (57)
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V4(x, 0) can be complex. By taking the real part in (57), it comes

V (x, 0) = Re(V4(x, 0)) + ε1 + ε2 +Re(ε3) +Re(ε4) (58)

because V (x, 0), ε1 and ε2 are real by definition.

Secondly, the key to bound the errors lies in the decay rate of the generalized Fourier series coefficients.

The convergence rate depends on the smoothness of the functions on the expansion interval.

We summarize in the next theorem taken from [40], the decay rates of the coefficients in the Legendre

series expansion and the error bounds of the truncated Legendre series in the uniform norm.

let ‖.‖T be the Chebyshev-weighted seminorm defined by

‖u‖T =

∫ 1

−1

| u′(x) |√
1− x2

dx

, Eρ denotes the Bernstein ellipse in the complex plane

Eρ = {z ∈ C|z =
1

2
(u+ u−1), u = ρeiθ,−π ≤ θ ≤ π}

and

fn(x) =
n∑
j=0

ajPj(x)

the truncated Legendre series expansions of f(x).

Theorem 4.1. If f , f ′,...,fk are absolutely continuous on [−1, 1] and ‖f (k)‖T = Fk <∞ for some k ≥ 1

(Habs(k)), then for each n > k + 1,

| an |≤
Fk

(n− 1
2 )(n− 3

2 )...(n− 2k−1
2 )

√
π

2(n− k − 1)
. (59)

If f is analytic inside and on the Bernstein ellipse Eρ with foci ±1 and major semiaxis and minor

semiaxis summing to ρ > 1 (Ha(Eρ)), then for each n ≥ 0,

| an |≤
(2n+ 1)`(Eρ)M

πρn+1(1− ρ−2)
(60)

where M = maxz∈Eρ | f(z) | and `(Eρ) denotes the length of the circumference of Eρ.

4.1. Bound for ε2

Ak and Vk correspond respectively to the Legendre series coefficients of the f(x) and of the payoff

functions. The density function is generally smoother than the payoff function in finance and we expect

the coefficient Ak to decay faster than Vk. The following proposition makes it precise.

Proposition 4.2. Let’s assume
∫ b
a
V 2(y, T )dy < +∞ and define

g(y) ≡ f
(
b− a

2
y +

a+ b

2

)
. (61)

There are two cases:
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1. Under Habs(k) with k > 1 for g, we have

| ε2 |≤
Gk

(k − 1)(N − 1
2 )(N − 3

2 )...(N − 2k−3
2 )

√
π

2(N − k)
(62)

where ‖g(k)‖T = Gk <∞.

2. g analytic on [−1, 1]. Then we get

| ε2 |≤
(2Nρ+ 3ρ− 2N − 1)`(Eρ)M

πρN+1(ρ− 1)2(1− ρ−2)
(63)

where g̃ is the analytic continuation of g on and within Eρ with ρ > 1, M ≡ maxz∈Eρ | g̃(z) | and

`(Eρ) denotes the length of the circumference of Eρ.

Proof. We have Vk → 0 as k →∞. Indeed

| Vk | =|
∫ b

a

V (y, T )Pk

(
2y − (a+ b)

b− a

)
dy | (64)

≤ ‖v‖L2[a,b]

√
b− a

2k + 1
. (65)

where we have used Cauchy-Schwartz inequality and ‖Pk‖ =
√

2
2k+1 .

So for N >>∞, we write

| ε2 |≤
∞∑
k=N

| Ak.Vk |≤
∞∑
k=N

| Ak |≡ E(N) (66)

Error ε2 is thus dominated by the Legendre series truncation of f(x).

To bring the analysis in the interval [−1, 1], we perform a change of variable y = 2x−(a+b)
b−a and define

g(y) = f( b−a2 y + a+b
2 ).

We consider 2 cases:

• Under Habs(k) with k ≥ 1 for g, using (59) and following the arguments in [40], it comes

E(N) ≤ Gk

(k − 1)(N − 1
2 )(N − 3

2 )...(N − 2k−3
2 )

√
π

2(N − k)
(67)

• g analytic on [−1, 1].

By the the theory of analytic continuation, there always exists a Bernstein ellipse Eρ with ρ > 1

such that g̃, the continuation of g, is analytic on and within Eρ. Using (60) and following the

arguments in [40], we derive

E(N) ≤ (2Nρ+ 3ρ− 2N − 1)`(Eρ)M

πρN+1(ρ− 1)2(1− ρ−2)
(68)
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4.2. Bound for ε3

Proposition 4.3. If

1.

f(b) = f(a), f (1)(b) = f (1)(a), ..., f (l−1)(b) = f (l−1)(a) (69)

2. f (l)(x) is integrable

Then

ε3 = O(
CN−1
M l

) for |M |>> 1 (70)

with CN−1 ≡
∑N−1
k=0

|Vk|(2k+1)
b−a .

In particular if the function f is differentiable to all orders and (1) is satisfied for any l, then ε3 decreases

faster than 1
|M |l for any finite power of l. This is the exponential convergence property.

Proof. Let’s fix k ∈ [0, N − 1]. For |M |>> 1,

|
∑

m∈Z−[−M,M ]

BmC
k
m |≤

∑
m∈Z−[−M,M ]

| Bm || Ckm | (71)

By applying theorem 4 p.42 in [13], we get

| Bm |≤
C1

| m |l
(72)

for a constant C1 independent of m.

Using (16), we have

| Ckm |≤
C2√
| m |

| Jk+ 1
2
(πm) | (73)

for a constant C2 independent of m, k.

Applying the property n ∈ Z, Jν(zenπi) = enνπiJν(z) to n = 1, we get | Jν(−z) |=| Jν(z) |. Using the

asymptotic result for x ∈ R, x→ +∞ (theorem 2.13 in [41])

Jν(x) v

√
2

πx
cos(x− π

4
− νπ

2
), (74)

The expression in (73) becomes, for m >> 1

| Ckm |≤
C3

| m |
. (75)

with a constant C3 independent of m, k.

So with (72) and (75), it comes

| Bm | Ckm |≤
C4

| m |l+1
(76)

for a constant C4 independent of m, k.

The series truncation error below (see [42] for proof) behaves like, for M >> 1,

∞∑
m=M+1

1

mn
v

1

(n− 1)Mn−1 . (77)

15



Applying (77) with n = l + 1, we finally obtain, for M >> 1,∑
m∈Z−[−M,M ]

| Bm || Ckm |= O
( 1

M l

)
. (78)

and can deduce directly ε3 = O(CN−1

M l ).

Remark 4.4. In practice, we believe the condition (69) in proposition 4.3 is nearly satisfied if the

boundary points a and b are chosen appropriately. Indeed, f(x), being a probability density function,

converges to 0 when | x |→ ∞. Let’s consider the benchmark and highly tractable Black Scholes model

where the gaussian density function, fm,σ(x) with mean m and standard deviation σ, and its derivatives

are known analytically and given by

f (n)m,σ(x) =
(−1)nHn(x−mσ )fm,σ(x)

σn
(79)

with Hn the Hermite polynomials defined by Hn(x) = (−1)ne
x2

2
dn

dxn e
− x2

2 .

Figure 1 shows the graph of f
(n)
m,σ for various values n. With a = −1.7813 and b = 1.7188, we observe

clearly that condition (69) is closely satisfied. We will give insight in the choice of [a, b] in Section 5.1.

4.3. Bound for ε1 and ε4

ε1 is simply bounded as |ε1| ≤
∫
R−[a,b] |V (y, T )|f̃(y|x)dy and is small as soon as f̃(y) decays to 0 faster

than V (y, T ) in the tail.

ε4 is essentially bounded by the integral truncation of the density function as stated in the following

proposition.

Proposition 4.5.

| ε4 |≤ CN,M .ε (80)

where CN,M ≡
∑N−1
k=0

∑M
m=−M |Vk(2k+1)Ckm|

b−a and ε ≡ 1
b−a

[
F̃ (a) + 1− F̃ (b)

]
with F̃ (x) the cumulative

distribution function of f̃(x).

Proof. Rk, being defined in (20), can be bounded as

| Rk |≤
1

b− a

[∫ a

−∞
f̃(x)dx+

∫ +∞

b

f̃(x)dx

]
=

1

b− a

[
F̃ (a) + 1− F̃ (b)

]
= ε (81)

It comes

| ε4 |≤
∑N−1
k=0

∑M
m=−M | Vk(2k + 1)Ckm |

b− a
ε = CN,M ε. (82)

Remark 4.6. • Our error analysis relies on the smoothness of the density function and not on the

regularity of the payoff function. We just require the payoff function some integrability conditions

on bounded interval and that the density function decays faster to 0 at infinity. This is particularly
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Figure 1: Various derivatives of the Gaussian density function in Black Scholes model (see section 5.2). The parameters are

S0 = 1, r = 0, T = 1, σ = 0.25 and a = −1.7813, b = 1.7188 with L = 7 for the truncation range (83).
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relevant in quantitative finance. Indeed, the density functions of asset prices tend to be smoother.

And the payoffs of some contracts are discontinuous as for the digital option (29) or have a kink at

the strike level as for call and put options (28).

• Some well-established option pricing methods depend on the regularity of the payoff function. For

example, in the Carr-Madan approach [5] and its variants, the Fourier transform of a version of

valuation formula (1) is taken with respect to the log-strike price. Damping of the payoff is then

necessary as, for example, a call option is not L1-integrable with respect to the logarithm of the

strike price. The methods accuracy depends on the correct value of the damping parameter. Or in

the widely used Monte carlo method with discretisation of SDEs (e.g Euler or Milstein schemes),

the smoothness of the payoff function impact directly the order of convergence of the approximation

schemes (see [43] section 6 or [44] section 14.5).

5. Numerical experiments

In this section, we perform a variety of numerical tests to illustrate the robustness and accuracy of

the new computational pricing method using Legendre polynomial. The payoff functions in finance can

be continuous or discontinuous. Here the European call options and the European digital call options

are considered. It allows to show that the convergence of the pricing method using Legendre polynomial

does not depend on the continuity of the payoff (see discussion in section 3.1 and remark 4.6). We cover

a representative class of models widely studied and used in quantitative finance:

• Black Scholes Model;

• Merton Jump Diffusion Models and Kou Jump Diffusion Models;

• Heston Stochastic Volatility Model.

They represent different schools of thoughts for the modelling of asset prices as random processes. In

their seminal work in [45], Black and Scholes modelize the asset prices as a geometric Brownian motion i.e

asset prices with continuous paths and a constant volatility. It leads to the famous Black-Scholes formula

which gives a theoretical estimate of the price of European-style options. It is perhaps the world’s most

well-known options pricing model and usually used as a benchmark model by the quantitative finance

community.

However, one of the main shortcoming of Black and Scholes model is to assume the underlying

volatility is constant over the life of the derivative, and unaffected by the changes in the price level of

the underlying security. It cannot explain long-observed features of the implied volatility surface such as

volatility smile and skew, which indicate that implied volatility does tend to vary with respect to strike

price and expiry. By assuming that the volatility of the underlying price is a stochastic process rather
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than a constant, it becomes possible to model derivatives more accurately (see e.g [46] and [47]). And

Heston model is one of the most popular stochastic volatility models for derivatives pricing.

An another school of modelling asset prices consists to introduce jumps as a way to explain why

the skew is so steep for very short expirations and why the very short-dated term structure of skew

is inconsistent with any stochastic volatility model. Or the strongest argument for using discontinuous

models is simply the presence of jumps in observed prices (see figure 1 in [48] and [2] or [46]). Merton

jump diffusion model and Kou jump diffusion model are among the most popular jumps models used in

quantitative finance.

In the equity and exchange rates (FX) derivatives market, liquid options like European call or put

contracts are quoted for different maturities or tenors with various strikes representing the moneyness.

FX markets are particularly liquid at benchmark tenors, such as 1 month (M), 2M, 3M, 6M, 1 year (Y),

2Y and possibly longer dated options [49]. For liquid equity index like Eurostoxx 50 or Nikkei 225, we

can observed quotes for maturities from 1 month up to 4 and 5 years [50]. With this in mind, for the tests

to be comprehensive, we consider short, standard and long maturities (0.1, 1, 3, 10 years) and in/at/out

of the money options.

5.1. Truncation Range

For practical usage, it is important to determine appropriately and as systematically as possible the

range [a, b] to minimise the integral truncation errors ε1 and ε4. Being given the characteristic function of

X = log(STK ), we can compute its cumulants cn, defined in (100), and uses the following formula proposed

in [9]:

[a, b] :=

[
c1 − L

√
c2 +

√
c4, c1 + L

√
c2 +

√
c4

]
(83)

The cumulants for each model are given in appendix B. As shown in the error analysis section, the

accuracy of the Legendre polynomial pricing method is affected by the choice of the interval [a, b]. Some

experience is helpful when choosing the correct truncation range. The value for L is taken to be in [7, 12]

and will be made explicit for each model in the tests.

Expression (83) uses cn up to degree 4. Similar range formula involving the first two moments of X

is implemented in [10]. In general, using high order cumulants captures better the tail behaviour of the

distribution.

5.2. Black Scholes Model

For this Model, the SDE for the asset price St, under risk neutral measure, is given by

dSt
St

= rdt+ σdWt. (84)

with Wt the Brownian motion, r the risk free rate and σ the volatility parameter.

The characteristic function ϕ(u) of log(STK ) is

ϕ(u) = exp(µui− 1

2
u2σ2T ) (85)
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with µ = − 1
2σ

2T − log(K).

The set of parameters is S0 = 1, r = 0, T = 10, σ = 0.25. With some experiments, choosing L around 7

is appropriate for the truncation range (83) and this value is consistent with thosed used in [10].

The other details of the model are provided in section 7.2.1.

We examine a long maturity with T = 10. Figure 2 compares the true Gaussian density and the recovered

density functions using respectively N = M = 12 and N = M = 32 for the truncation in formula (26).

With N = M = 12, the approximating density captures the form of the true density although we observe

some slight negative values in the tail. With N = M = 32, it is indistinguishable from the true density

function.

For the pricing, we consider a discontinous payoff with the digital option. As shown in Figure 3, the error

convergence of the method is exponential in terms of N and M respectively. Indeed, in Black Scholes

model, the density function of log(STK ) is gaussian and so is infinitely differentiable with exponential decay

to 0 for large x. Further, we observe the error convergence rate is basically the same for different strike

prices.

0
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0.2

0.3

0.4

0.5

0.6

-6 -4 -2 0 2 4 6

Figure 2: Comparison of the true Gaussian density (solide line) and its approximation based on N = M = 12 (solide line

with ’+’ marker) and N = M = 32 (solide line with ’o’ marker) for maturity T = 10.

5.3. Merton Jump Diffusion Model

In this model [51, 52], the SDE for the asset price St, under risk neutral measure, is written as

dSt
St−

= (r − λ.m(t))dt+ σdWt + (J(t)− 1)dπ(t). (86)

where W (t) is a Brownian motion, π(t) a Poisson counting process with constant jump intensity λ

and r the deterministic risk-free interest rate. {J(t)}t≥0, representing the jump size, is a sequence of

independent log normal random variables of the form J(t) = eµ+γN(t) with N(t) a standard gaussian

random variable and m ≡ E[J(t)− 1]. π, W and J are all assumed to be independent.
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Figure 3: Error convergence for pricing European digital call option with T = 10 in Black Scholes model.

The characteristic function ϕ(u) of log(STK ) is

ϕ(u) = exp

(
iub̃T − u2σ2T

2
+ λT (eiuµ−

γ2u2

2 − 1)

)
(87)

where b̃ = b− log(K)
T and b = − 1

2σ
2 − λ(eµ+

γ2

2 − 1).

The set of parameters is calibrated to market data from [52] with r = 0 and maturity 3 years: S0 = 1, T =

3, σ = 0.1765, λ = 0.089, µ = −0.8898, γ = 0.4505. Some experience shows that L = 10 is appropriate

for the truncation range (83). It corresponds also to the value recommended in [9]. The other details of

the model are provided in section 7.2.2.

We study a standard maturity with T = 3. Figure 4 compares the true density and the recovered density

functions using respectively N = M = 50 and N = M = 80. The true density is computed using

formula (109) with a truncation in the infinite sum at 50. First we observe the Merton density function,

showing a sharp peak, is less smooth than the Gaussian density function. With N = M = 50, the

approximating density captures reasonably well the form of the true density although we can observe

some slight negative values in low probability area. With N = M = 80, the difference between the true

density and the approximating density is not discernible.

We consider the digital option for pricing. As shown in Figure 5, the error convergence of the method is

still exponential in N and M respectively. But the convergence is slower than in the Black Scholes model

as expected in view of the sharp peak density function. And the error convergence rate is basically the

same for different strike prices.
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Figure 4: Comparison of the true density function, (solide line) and its approximation based on N = M = 50 (solide line

with ’+’ marker) and N = M = 84 (solide line with ’o’ marker) for maturity T = 3 in Merton jump diffusion model.
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Figure 5: Error convergence for pricing European digital call option with T = 3 in Merton Jump Diffusion model.
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5.4. Kou Jump Diffusion Model

In this model [53], the dynamic of the asset price, S(t), under risk neutral probability, is

dSt
St−

= µdt+ σdWt + d

N(t)∑
i=1

(Vi − 1)

 . (88)

with Wt a standard Brownian motion, N(t) a Poisson process with rate λ. {Vi} is a sequence of

independent identically distributed (i.i.d.) nonnegative random variables such that Y = log(V ) has an

asymmetric double exponential distribution with the density

fY (y) = p.η1e
−η1y1y≥0 + q.η2e

η2y1y<0, η1 > 1, η2 > 0, (89)

p, q ≥ 0, p+q = 1, representing the probabilities of upward and downward jumps and µ = λ
(

p
1−η1

+ 1−p
η2+1

)
.

The characteristic function ϕ(u) of log(STK ) is given by

ϕ(u) = exp

(
iub̃T − u2σ2T

2
+ λTiu

(
p

η1 − iu
− 1− p
η2 + iu

))
(90)

where b̃ = b− log(K)
T and b = − 1

2σ
2 − λ(eµ+

γ2

2 − 1).

The set of parameters is from [53] with r = 0 and maturity 1 year:

S0 = 1, T = 1, σ = 0.16, λ = 1, p = 0.4 and η1 = 10, η2 = 5. Some experience shows that L = 10

is appropriate for the truncation range (83). It corresponds also to the value recommended in [9]. The

other details of the model are provided in section 7.2.3.

Analytical formula for density function being not available, Figure 6 presents the recovered density

functions for T = 1 and 3 respectively. We observe a sharper-peaked density for T = 1.

For the pricing, we study the European call option with a standard maturity T = 1 y. As shown in

Figure 7, the error convergence of the method is exponential in N and M respectively. Further, the error

convergence rate is basically the same for different strike prices.

5.5. Heston Stochastic Volatility Model

In this model [3] under risk neutral measure, the SDEs are given by

dx̃t = −1

2
utdt+

√
utdW1t (91)

dut = λ(ū− ut)dt+ η
√
utdW2t (92)

where x̃t denotes the log-asset price variable and ut the variance the asset price process. Parameters

λ ≥ 0, ū ≥ 0 and η ≥ 0 represent the speed of mean reversion, the mean level of variance and the

volatility of volatility, respectively. Furthermore, the Brownian motions W1t and W2t are assumed to be

correlated with correlation coefficient ρ.

The characteristic function ϕ(x) of log(STK ) can be represented by

ϕ(x) = e
−ix log(K)+

u0
η2

(
1−e−DT

1−Ge−DT

)
(λ−iρηx−D)+λū

η2

[
T (λ−iρηx−D)−2 log

(
1−Ge−DT

1−G

)]
(93)
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Figure 6: Recovered density functions in Kou jump diffusion model for T = 1y (solide line with ’o’ marker) and T = 3y

(solide line with ’+’ marker) with N = M = 80.
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Figure 7: Error convergence for pricing European call option with T = 1 in Kou Jump Diffusion model.
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with D =
√

(λ− iρηx)2 + (x2 + ix)η2 and G = λ−iρηx−D
λ−iρηx+D .

This characteristic function is uniquely specified, since we take
√
x+ yi such that its real part is nonnega-

tive, and we restrict the complex logarithm to its principal branch. In this case the resulting characteristic

function is the correct one for all complex ω in the strip of analyticity of the characteristic function [54].

The set of parameters is calibrated to market data from [55] with r = 0 and a short maturity T = 0.1:

S0 = 1, T = 0.1, λ = 0.9626, ū = 0.2957, η = 0.7544, ρ = −0.2919, u0 = 0.0983.

Since the analytical formula for c4 is involved, instead of (83), as recommended in [9], we use the following

truncation range:

[a, b] :=
[
c1 − 12

√
|c2|, c1 + 12

√
|c2|
]

(94)

Cumulant c2 may become negative for sets of Heston parameters that do not satisfy the Feller condi-

tion, i.e, 2ūλ > η2. We therefore use the absolute value of c2. The formulas for cumulants are reported

in section (7.2.4).

Analytical formula for density function being not available, Figure 8 provides an illustration for the re-

covered density functions with T = 0.1 and T = 1 respectively. For T = 0.1, the density is much more

peaked.

We examine the European call option with a short maturity T = 0.1 year for pricing. Although the sharp

peaked density, the error convergence of the method is still exponential in N and M respectively, as

shown in Figure 9. Moreover, the error convergence rate is basically the same for different strike prices.
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Figure 8: Recovered density functions in Heston stochastic volatility model for T = 0.1 y (solide line with ’o’ marker) and

T = 1 y (solide line with ’+’ marker) with N = M = 80.
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Figure 9: Error convergence for pricing European call option with short maturity T = 0.1 in Heston stochastic volatility

model.

6. Conclusion and discussions

In this paper, we have introduced a method for pricing European-style options combining Fourier

series and generalized Fourier series with Legendre polynomials. It can be used as long as a characteristic

function for the underlying price process is available. It consists to expand the density function as Legen-

dre series and observe that the coefficients can be accurately retrieved from the characteristic functions.

This representation of the density function is then uses for the risk-neutral valuation and approximation

formulas are derived. These formulas involve the expression (95). However its direct implementation,

using formulation (7.1), gives rise of rapid accumulations of round-off errors for large values of n. We

rewrite these quantities as solution of second-order difference equations and compute them with machine

precision using the stable Olver algorithm. Also derivation of the pricing method has been accompa-

nied by an error analysis. Errors bounds have been derived and the study relies more on smoothness

properties which are not provided by the payoff functions, but rather by the density function of the un-

derlying stochastic models. This is particularly relevant in quantitative finance for option pricing where

the payoffs of the contract are generally not smooth functions. In our numerical experiments, we chose a

class of models widely used in quantitative finance. The payoff covered are continuous (call option) and

discontinuous (digital call option). The tests considered, with various strike prices and maturities, show

exponential convergence rate.
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We suggest a couple of interesting avenues of research:

• Here, we have used Olver’s algorithm for the computations of the integrals involving Legendre

polynomials and exponential functions (95). Indeed, Olver’s method consists to replace the original

problem by an equivalent boundary value problem, which is solved by Gaussian elimination without

pivoting. Extensions or reformulations of Olver’s method have been made. For example Van der

Cruyssen [56] have shown that if the algebraic equations arising from the use of Olver’s method are

solved using an LU decomposition method then the total amount of work required is almost halved.

See Lozier [57] for a more detailed discussion. It would be interesting to reconsider and adapt or

extend existing algorithms in order to reduce the amount of computational effort.

• Accurately valuing financial claims plays a key role in financial modelling, but the risk management

of these derivative instruments is at least as important (see e.g [47] or [33]). To undertake this

function, we need to compute the Greeks defined as the sensitivity of the price of derivatives to

a change in underlying parameters on which the value of an instrument is dependent. Series

expansions for the sensitivity factors, e.g ∆ = ∂V
∂S0

, Γ = ∂2V
∂S2

0
or ν = ∂V

∂σ are let for future research.

• In this manuscript, we have focused on the pricing of European-style options, which are instrumen-

tal and the building blocks for constructing more complex option products. Extending Legendre

polynomials pricing method to cover more exotic contracts like forward start options, quanto op-

tions, spread options or options with early-exercise features (see e.g [58], [59], [36]) are exciting area

of research.

• The calibration, which consists to determine the parameters of a parametric model, is an instru-

mental preliminary step for option pricing and hedging. Usually, it corresponds to find parameters

that make the models consistent with market quotes (e.g a set of European call or put prices for

various strikes and maturities) and the formulas derived in proposition 3.1 can be used. This is

formulated as a minimisation of some loss functions (e.g the squared difference between the quoted

and model prices) and commonly leads to a non convex optimisation problem. Standard procedures

based on the derivatives of the loss function (e.g quasi-Newton Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm) may be not appropriate. Indeed different starting points can lead to quite dif-

ferent solutions, which can have a significant impact on option pricing and sensitivity factors [60].

Similarly, different calibration criteria lead to different results [61]. In [62], the authors suggested

to use heuristic techniques, differential evolution and particle swarm optimisation, which seem to

bring some promising results. Exploring recent literature about real life applications of contempo-

rary numerical optimisation and classification techniques in different fields such as [63, 64, 65, 66]

is part of our future research.
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7. Annexe

7.1. Appendix A

We propose in the following proposition some analytical formulas for the computation of expression∫ 1

α

Pn(t)eβtdt. (95)

Proposition 7.1. for β 6= 0,

∫ 1

α

Pn(t)eβtdt =
1

2n

bn2 c∑
k=0

(−1)kCknC
n
2n−2k [IEP (β, n− 2k, 1)− IEP (β, n− 2k, α)] (96)

with

IEP (β, n, t) := eβt
n∑
i=0

ti
n!

βn+1−ii!
(−1)n−i. (97)

Proof. For (96), by using successively integration by parts formula, we show easily∫
tneβtdt = eβt

n∑
i=0

ti
n!

βn+1−ii!
(−1)n−i. (98)

We obtain (96) by using the formula (2) for Legendre polynomial.

The computation of (95) with (96) for small values of n does not pose any problems. When n >> 1

accuracy and stability issues arise because of serious substractive cancellations in the summation (96). In

section (3.2), we propose to use Olver algorithm to implement these terms in a stable way with machine

precision.

7.2. Appendix B

Here, we provide some analytical formulas for the cumulants of log(STK ), the density function of

log(ST ) and the option pricing in the class of models discussed in section 5.

Let X be a random variable and ΦX its characteristic function. We can define an unique continuous

function ΨX in a neighbourhood of zero such that

ΨX(0) = 0 and ΦX(z) = exp[ΨX(z)]. (99)

The function ΨX is called the cumulant generating function. The cumulants of X are defined by

cn(X) =
1

in
∂nΨX

∂un
(0). (100)

(see [2] for details). We present the cumulants c1, c2 and c4, needed to determine the truncation range

in (83).
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7.2.1. Black Scholes model

With r = 0 in (84), we have

c1 = log

(
S0

K

)
− 1

2
σ2T (101)

c2 = σ2T (102)

c4 = 0 (103)

log(ST ) ∼ N(log(S0)− 1

2
σ2T, σ

√
T ) (104)

V (x, t) = N

(
log(S0

K )− 1
2σ

2T

σ
√
T

)
(105)

where V (x, t) is the analytical digital call price with strike K.

7.2.2. Merton Jump Diffusion Model

With r = 0 in (86), we have

c1 = T (b̃+ λµ) (106)

c2 = T (σ2 + λ(µ2 + γ2)) (107)

c4 = Tλ(3γ4 + 6µ2γ2 + µ4) (108)

fXT (x) = e−λT
∞∑
k=0

(λT )k

k!

1√
2π(σ2T + kγ2)

e
− 1

2
(x−b̃T−kµ)2

σ2T+kγ2 (109)

V (x, t) = e−λT
∞∑
k=0

(λT )k

k!
N

(
log(S0

K ) + bT + kµ√
σ2T + kγ2

)
(110)

with b = − 1
2σ

2−λ(eµ+
γ2

2 −1), b̃ = b− log(K)
T , fXT (x) the probability density function of XT ≡ log(STK )

and V (x, t) the analytical digital call price with strike K.

7.2.3. Kou Jump Diffusion Model

With (88), we have

c1 = T

(
b̃+ λ

(
p

η1
− 1− p

η2

))
(111)

c2 = T

(
σ2 + 2λ

(
p

η21
+

1− p
η22

))
(112)

c4 = 24Tλ

(
p

η41
+

1− p
η42

)
(113)

The pricing formula for a European call option is involved and can be found in Theorem 2 [53].
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7.2.4. Heston Stochastic Volatility Model

With (91), we have

c1 = (1− e−λT )
(ū− u0)

2λ
− 1

2
ūT (114)

c2 =
1

8λ3
(ηTλe−λT (u0 − ū)(8λρ− 4η) + λρη(1− e−λT )(16ū− 8u0) (115)

+ 2ūλT (−4ληρ+ η2 + 4λ2) + 8λ2(u0 − ū)(1− e−λT ) (116)

+ η2((ū− 2u0)e−2λT + ū(6e−λT − 7) + 2u0)) (117)
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