Accepted Manuscript

Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: *In vitro* and *in vivo* evaluation, binding mode prediction and SAR exploration

Ludmila Ferreira de Almeida Fiuza, Raiza Brandão Peres, Marianne Rocha Simões-Silva, Patricia Bernardino da Silva, Denise da Gama Jaen Batista, Cristiane França da Silva, Aline Nefertiti Silva da Gama, Tummala Rama Krishna Reddy, Maria de Nazaré Correia Soeiro

PII: S0223-5234(18)30142-9

DOI: 10.1016/j.ejmech.2018.02.020

Reference: EJMECH 10197

To appear in: European Journal of Medicinal Chemistry

Received Date: 19 December 2017

Revised Date: 6 February 2018

Accepted Date: 6 February 2018

Please cite this article as: L.F. de Almeida Fiuza, Raiza.Brandã. Peres, M.R. Simões-Silva, P.B. da Silva, D. da Gama Jaen Batista, Cristiane.Franç. da Silva, A.N.S. da Gama, T.R. Krishna Reddy, M. de Nazaré Correia Soeiro, Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: *In vitro* and *in vivo* evaluation, binding mode prediction and SAR exploration, *European Journal of Medicinal Chemistry* (2018), doi: 10.1016/ j.ejmech.2018.02.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

	A CCEPTED MANUSCRIPT
1	Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as
2	potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation,
3	binding mode prediction and SAR exploration
4	
5	Ludmila Ferreira de Almeida Fiuza ¹ , Raiza Brandão Peres ¹ , Marianne Rocha Simões-
6	Silva ¹ , Patricia Bernardino da Silva ¹ , Denise da Gama Jaen Batista ¹ , Cristiane França
7	da Silva ^{1,} Aline Nefertiti Silva da Gama ¹ , Tummala Rama Krishna Reddy ² and Maria
8	de Nazaré Correia Soeiro* ¹
9	
10	¹ Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz
11	Rio de Janeiro. Rio de Janeiro. Brazil.
12	² School of Health, Sport and Bioscience, College of Applied Health and
13	Communities, University of East London, Stratford campus, Water Lane, UK.
14	
15	
16	* Corresponding author at Av. Brasil, 4365 Manguinhos, Rio de Janeiro, Brazil, Phone:
10	
17	55 21 2562-1368; fax: 055 21 2598-4577
18	Email address: <u>soeiro@ioc.fiocruz.br (</u> M.N.C. Soeiro)
19	
20	Running title: Pyrazolo[3,4-e][1,4]thiazepin activity against T.cruzi
21	
22	

23 Highlights

- 24 Structure based studies predicted the binding of novel CYP51 inhibitor with CYP51Tc.
- 26 The compounds 1 and 1f displayed trypanocidal effect upon *T.cruzi in vitro*.
- 27

25

- 28 Compound **1f** gave no effect in vivo, while compound **1** reduced the parasitemia peak.
- 29
- 30

31 Graphical abstract

33 Abstract

American trypanosomiasis or Chagas disease (CD) is a vector borne pathology caused by the 34 parasite Trypanosoma cruzi (T. cruzi), which remains a serious global health problem. The 35 36 current available treatment for CD is limited to two nitroderivatives with limited efficacy and several side effects. The rational design of ergosterol synthetic route inhibitors (e.g. CYP51 37 inhibitors) represents a promising strategy for fungi and trypanosomatids, exhibiting excellent 38 anti-T.cruzi activity in pre-clinical assays. In the present work, we evaluate through different 39 approaches (molecular docking, structure activity relationships, CYP51 inhibitory assay, and 40 phenotypic screenings in vitro and in vivo) the potency and selectivity of a novel CYP51 41 inhibitor (compound 1) and its analogues against *T.cruzi* infection. Regarding anti-parasitic 42 43 effect, compound 1 was active in vitro with EC₅₀ 3.86 and 4.00 µM upon intracellular 44 (Tulahuen strain) and bloodstream forms (Y strain), respectively. In vivo assays showed that 45 compound 1 reduced in 43 % the parasitemia peak but, unfortunately failed to promote animal survival. In order to promote an enhancement at the potency and pharmacological properties, 46 17 new analogues were purchased and screened in vitro. Our findings demonstrated that five 47 compounds were active against intracellular forms, highlighting compounds 1e and 1f, with 48 EC_{50} 2.20 and 2.70 μ M, respectively, and selectivity indices (SI) = 50 and 36, respectively. 49 50 Against bloodstream trypomastigotes, compound **1f** reached an EC₅₀ value of 20.62 μ M, in a similar range to Benznidazole, but with low SI (3). Although improved the solubility of 51 compound 1, the analogue 1f did not enhance the potency in vitro neither promote better in 52 vivo efficacy against mouse model of acute T.cruzi infection arguing for the synthesis of novel 53 pyrazolo[3,4-e][1,4]thiazepin derivatives aiming to contribute for alternative therapies for CD 54

55

56

57 **Key-words:** Chagas disease, *Trypanosoma cruzi*, CYP51 inhibitors and SAR studies.

Chagas disease (CD) is a parasitic infection caused by the protozoan Trypanosoma 60 cruzi (T. cruzi). Considered, as a worldwide public health problem due to migration 61 flows and non-vector transmission routes, is estimates that about 6 to 7 million people 62 are carries of *T.cruzi* and an average of over 12,000 people die every year [1, 2]. The 63 main mechanism of transmission includes: classical vectorial transmission by 64 triatomine bugs also known as blood sucking bugs, via congenital when the parasite is 65 transmitted from mother to child, by oral contamination through ingesting the parasite 66 on contaminated food or drink and through iatrogenic that comprehend blood 67 transfusion or organ transplantation [3]. In many endemic countries like Brazil, vector 68 and blood bank control measures lead to a drastic decreased in the number of new 69 cases via classical vectorial route however, in last decades the oral transmission has 70 emerged with epidemiological relevance in the Amazon region [2]. The CD has two 71 phases, the acute phase appears soon after infection and is characterizing by the 72 patent parasitemia and mostly displaying oligosymptoms ranging from flu-like to 73 intense myocarditis. Due to immune host response, there is a control of the parasite 74 load and most patients move to a later stage called the chronic phase. Although most 75 stay at the indeterminate stage, about 30-40% may develop symptoms after 10 to 20 76 years post infection mainly related to cardiomyopathy associated or not to 77 gastrointestinal effects [1,4]. The CD available treatment is restricted to two oral 78 nitroheterocyclic compounds, nifurtimox and benznidazole (Bz) both introduced in 79 clinical more than 50 years ago. Even though 25 million people are at risk of infection, 80 according to the WHO, less than 1% of infected patients receive treatment [5]. Thus, 81 82 the development of new effective drugs for Chagas disease is urgently needed, a

neglected pathology that mostly affects poor regions, and with low interest by the 83 pharmaceutical companies due to the low monetary welfares. In addition, other 84 limitations of using the current nitro-derivative drugs are: varying results according to 85 the disease stage, treatment period and dose, age and geographical origin of the 86 patients, side effects, besides a natural resistance profile of some parasite strains 87 against nitro-derivatives [1, 6, 7, 8]. In order to face the limitations of the available 88 therapy, several in vitro and in vivo studies of potentials new drug candidates for CD 89 have been performed; some of these studies involving inhibitors of the ergosterol 90 biosynthesis pathway. Differently from mammalian cells, in fungi and trypanosomatids, 91 the cytochrome P450 enzyme or sterol 14α-demethylase (CYP51) pathway leads to 92 formation of ergosterol-like products, which are essential for the survival of these 93 94 parasites, producing viable membranes and making possible cell growth and division [9,10]. Recently, two CYP51 inhibitors first introduced as antifungal, Posaconazole 95 and E1224 (the prodrug of Ravuconazole) and that later showed in vitro and in vivo 96 efficacy against T. cruzi were moved for clinical trials upon chronic Chagas disease 97 98 patients. Unsuccessfully, both inhibitors demonstrated therapeutic failure as compared to the reference drug, Bz [3, 11]. Among several possibilities, the disappointing results 99 could be related to the lack of translation from in vitro and in vivo models as compared 100

to the clinic trials as well as lack of pharmacological ideal conditions for human therapy. In fact, the efficacy of the CYP51 inhibitors may be related to the dose and time of exposure. It has been proposed that in clinical trials the administrated dose was inferior to those reached in pre-clinical analysis required to sustain the trypanocidal effect. Also, longer drug therapy administration could have improved their clinical trial efficacy [12, 13, 14]. Then, this class of compounds should be more $_{107}$ $\,$ studied in pre-clinical studies as the parasite is dependent on endogenous sterols and

108	their products, reinforcing the purpose to study CYP51 inhibitors as potential treatment
109	to CD [15, 16, 17]. Also, it must be considering others CYP51 inhibitors molecules, like
110	imidazolic compounds VNI and VFV, that revealed very promising activity against a
111	variety of <i>T. cruzi</i> strains in vitro and in vivo including a high stringent male mouse
112	experimental model [10, 18 19, 20]. These findings reinforces the need to test the
113	potential activity of novel inhibitors of CYP51 more potent and selective and that could
114	be designed with optimized pharmacological properties, besides presenting reduced
115	production cost, and which would allow treatment to be carried out for extended
116	periods of time [10, 16, 20]. Thus, the aim of this study was to evaluate the anti-
117	parasitic activity of a novel pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitor
118	(compound 1) and its 17 analogues through different in silico, in vitro and in vivo
119	analysis.
120	

121 2. Results and discussion

122 Compound dataset was prepared using commercially available compounds, which 123 cover the broad chemical landscape from the Asinex supplier of ZINC database 124 (release 6). A dataset of 240,000 compounds was extracted (smiles format) based on

¹²⁵ "lead-like" properties such as Molecular weight between 150 and 500, H-bond donor

126	\leq 5, H-bond acceptors \leq 10, XlogP \leq 5, Number of rotatable bonds \leq 8. The minimum
127	cut off for the molecular weight was chosen as 150 to avoid the selection of reagent
128	like molecules. 2D-fingerprints in combination with tanimoto distances were used to
129	select a diverse set of 100 compounds. These compounds were screened for their in
130	vitro efficacy against intracellular T.cruzi amastigotes (strain: Silvio X10/7) in a single
131	replicate at 5 μ M. Five compounds that showed >80 % growth inhibition of intracellular

CYP51_{Tc} assays. Here, we discuss an interesting compound 1 (MW 413.93; cLogP 134

4.84; H-bond acceptors 4; H-bond donors 2; Number of rotatable bonds 4) with a 135

pyrazolo[3,4-e][1,4] thiazepin scaffold that showed strong CYP51_{Tc} inhibition, with 136

activity comparable to Nifurtimox (Figure 1). This compound demonstrated an EC₅₀ of 137

0.4 µM against intracellular Silvio X10/7 parasites, cidal nature (rate of kill assay) with 138

minimum cidal concentration (MCC) of 17 µM (Figure 2) and CYP51_{Tc} inhibition with 139 an IC₅₀ of 0.1 µM (Figure 3). Both potency and cidal nature of this compound are 140

compared to Nifurtimox in Table 1. 141

142

132

Figure 1. Molecular structures and ten point dose response curves of Nifurtimox and 143 compound **1** with calculated potency values. The X-axis shows log of compound molar 144 concentrations (M) and Y-axis shows the normalized activity based on the 145 measurement of number of amastigotes per host cell. 146

147

Figure 2. Rate-of-kill assay for compound **1**. Ten concentrations of compound were tested. Growth curves are shown for the compound at different concentrations indicated on the right hand side of each growth-line (μ M). The level of infection was assessed every 24 hours for 96 hours. Dotted line represents concentration at which

152 host cell toxicity was observed. All measurements are the average of three replicates.

Table 1. Potency assay and Static-cidal (SC) assay results for control compound Nifurtimox and compound **1**

Compound	MAX FI* (itatic Ciual)	Active against Silvio X10/7 st. in EC50 (CM)
Nifurtimox	103	nα
Compound 1		

- 155 *Maximum Percent Inhibition in the static cidal assay, only derived from compound concentrations that
- are not toxic to the host cells.

157

158

159

160

Inhibitory effect of compound 1 on CYP51_{Tc} activity 162

163

Figure 3. T.cruzi CYP51 Inhibition Assay results for the compound 1 showing an IC₅₀ value of 164 0.1 µM. 'Y' axis range 95.02 (std. error 4.94), slope factor 1.70 (std. error 0.39). Refer 165 supporting information for test concentrations and associated data. 166 167

168	Compound 1 was tested in a fluorescence based functional assay [21] using
169	recombinant expressed T.cruzi CYP51 (Tulahuen strain). Posaconazole was used as
170	a reference compound. Compound 1 showed potent inhibition of <i>T.cruzi</i> CYP51 with
171	IC_{50} value of 0.1 μM (Figure 3), whereas Posaconazole displayed an IC_{50} value of
172	0.048 μ M (refer supporting information). In a similar assay, Riley et al. [21] reported an
173	IC_{50} value of 0.880 μM for Fluconazole. Overall compound $\boldsymbol{1}$ displayed over 8-fold
174	more inhibitory activity than Fluconazole and 2-fold less inhibitory activity than
175	Posaconazole.
176	As compound 1 showed good potency, cidal nature and strong CYP51 _{Tc} inhibition, we

have selected this compound for further development. Initially we have assessed the 177

FRK

- binding interactions of compound **1** with CYP51 using structure based drug design in
- order to gain deeper understanding of the interactions at the molecular level. Further,

- ¹⁸⁰ we have tested this compound against other strains of *T.cruzi* representatives of
- distinct parasite discrete type units DTUs (Tulahuen DTU VI and Y, DTU II).
- 182 Binding Mode Prediction and Molecular interactions analysis of compound 1
- 183 The ligand present in the CYP51_{Tc} (PDB ID: 4C27) crystal structure was re-docked to
- validate the docking protocol, which was able to successfully reproduce the binding
- mode observed in the crystal structure. The RMSD value between the heavy atoms of
- the GLIDE-predicted pose and the crystallographic binding pose is 0.41 A°. We used
- 187 this docking protocol to dock compound **1** to CYP51_{Tc}.

189	198		
190	199		
191	200		
192			
193			
194			
195			
196			
197			

CYP51 of T. cruzi is represented as a transparent surface with cartoon secondary structure. F Heme in yellow sticks, Fe in red CPK model. Compound 1 representation: Van der Waals i surface around the compound **1** in mesh format, nitrogen in blue, oxygen in red, sulfur in yellow, g chlorine in green. Heme iron co-ordination for both binding poses (A and B) in magenta u dotted lines. π - π stacking interactions between pyrazole ring and heme macromolecule in r teal dashed lines. Side chains of the amino acid residues (wire format) involved in interactions е with compound **1** (A, B) through either π - π stacking (Teal dashed lines) or hydrogen bonding 4 (magenta dashed lines). All structure based drug design Images in this article are generated : Ρ using Schrödinger drug design software.

r е d i С t е d b i n d i n g р 0 s е s (Α а n d В) 0 f С 0 т р 0 и п d 1 (Т е а 1 s t i С k s)

201	Docking studies predicted two binding poses for compound ${\bf 1}$ (Figure 4). In both the
202	poses, the benzyloxy phenyl moiety attached to the basic scaffold pyrazolo-thiazepin
203	mainly occupies the hydrophobic cleft making good van der Waals and hydrophobic
204	interactions with the surrounding amino acids, but the basic scaffold is in different
205	orientation, and the heme iron coordination is different. In the top scoring pose 1 (XP
206	GScore = - 9.44), the heme iron coordination is predicted with the carbonyl oxygen of
207	the basic scaffold at a distance of 2.29 Å. The Pyrazole ring of the basic scaffold
208	engages in $\pi\text{-}\pi$ stacking interactions with the heme macrocycle and hydrogen bonds
209	through N-H group with a hydroxyl oxygen of the B'/C loop residue Tyr116. In addition,
210	the phenyl group undergoes a $\pi\text{-}\pi$ stacking interaction with the phenyl ring of the B'
211	helix residue Tyr103. In the slightly lower scoring pose 2 (XP GScore = - 8.66), the
212	heme iron coordination is predicted with the nitrogen atom of the pyrazole ring at a
213	distance of 2.54 Å. Similar to pose 1, the Pyrazole ring undergoes $\pi\text{-}\pi$ stacking
214	interactions with the heme macrocycle and the phenyl group engages in $\pi\text{-}\pi$ stacking
215	interaction with the phenyl ring of the B' helix residue Tyr103. In addition, the N-H
216	group of the thiazepin ring hydrogen bonded to the carbonyl oxygen of the I-helix
217	residue Ala291. The proposed hydrogen bond formation with Tyr116, π - π stacking
218	interactions with the heme macrocycle and Tyr103 appear to mimic the
219	posaconazole/flucanozole interactions with the CYP51 $_{Tc}$. Overall, both the poses are

220	stabilized in the binding pocket with a network of interactions including Fe-
221	coordination, $\pi\text{-}\pi$ stacking and hydrogen bonding interactions. It appears that these
222	interactions play a dominant role in the binding affinity of compound 1.

223 Evaluation of *in vitro* activity of compound 1 against Tulahuen and Y strains

224	Compound 1 was further evaluated against intracellular forms of T cruzi (Tulahuen
225	strain transfected with the β -galactosidase). The anti-parasitic activity of this
226	compound was measured to determine the EC50 values after 96 h of compound
227	incubation. The data showed that compound 1 present considerable reduction in the
228	number of parasite population, with an EC $_{50}$ of 3.86 $\mu M,$ which is comparable to the
229	activity of reference compound (Bz) that reached an EC $_{50}$ of ~2.63 μM (Table 2). Our
230	data confirmed that this CYP51 inhibitor is able to act upon different parasite strains
231	(Sylvio-X10/7 and Tulahuen), belonging also to different T.cruzi DTUs (I and VI,
232	respectively), which is a very promising characteristic for a novel drug for CD [8].

Compound	Activity against intracellular forms	Activity aga trypo (E	Activity against bloodstream trypomastigotes (EC50 µM)	
	(EC ₅₀ μM)	2 h	24 h	
Benznidazole	2.63 ± 0.49	>10	6.02 ± 1.47	
Compound 1	3.86 ± 0.26	>10	4.00 ± 0.35	

233**Table 2.** Activity (EC50 - Mean ± SD) against intracellular forms (Tulahuen B-Galactosidase234transfected strain) and bloodstream trypomastigotes of T.cruzi (2 and 24h - Y strain).

Next, as compound 1 displayed a potential activity *in vitro* against intracellular forms of *T. cruzi* (Tulahuen and Sylvio X10/7 strains), this compound was assayed against
other relevant forms for mammalian infection, the bloodstream trypomastigotes, using
also another parasite strain and DTU (Y strain, DTU II), under a time drug exposure
incubation (2 and 24 h). The findings demonstrated that although both compound 1

241	and Bz were not active after 2 h of incubation (EC ₅₀ of >10 μ M), the CYP51 inhibitor
242	showed trypanocidal effect after longer periods of incubation of BT, with an EC $_{50}$ of $_{\text{-}4}$
243	μ M, and as found for intracellular parasites (Tulahuen strain), with comparable
244	potency as Bz (Table 2) and Nifurtimox (Table 1). We have therefore evaluated a set
245	of selected analogues (1a-1q, Table 3) with various functional groups that differ in

246	electronic properties, position and steric properties as follows. The phenotypic effect of
247	these compounds was first screened regarding their ability to reduce the infection
248	levels against intracellular forms of <i>T. cruzi</i> (Tulahuen strain). Compounds with > 50 $\%$
249	reduction on infection levels using a single concentration (10-12 $\mu M,$ corresponding
250	the EC_{90} value of Bz, Table 3) were further subjected to potency assays (activity
251	expressed as EC_{50} in Table 3). Toxicity profiles were determined against L929 cell
252	cultures by incubating for 96 h with different concentrations of these compounds and
253	then cell viability evaluated by both light microscopy and colorimetric assay
254	(AlamarBlue tests) and expressing the respective LC_{50} values (Table 3). The ratio of
255	LC_{50} and EC_{50} values is presented in the same table as Selectivity Index (SI),
256	indicating the quantity of compound that is active against the <i>T.cruzi</i> but is not toxic
257	264
258	265
259	
260	
261	
262	
263	

Type 1

Type II

273

			R				% redι
ID	Туре	Ortho	Meta	Para	R1	R ₂	ا infect si conce
Bz	-	-	- `	-	-	-	89.3
1	I	CI	Н	Н	Н	-	
1a	I	Н	Н	Cl	Н	-	14.88
1b	I	F	Н	Н	Н	-	63.64
1c	I	Н	F	Н	Н	-	70.68
1d	I	Н	Н	F	Н	-	32.42
1e	I	Me	Н	Н	Н	-	69.14
1f	I	Н	Ме	Н	Н	-	89.2

Benznidazole (BZ)

277	The <i>in vitro</i> analysis revealed that five compounds (1b, 1c, 1e, 1f and 1k, Table 3)
278	were able to decrease the intracellular parasite load in the infected L929 cell cultures,
279	ranging 53 up to 89 % of reduction when concentration equivalent of EC_{90} of Bz was
280	used (Table 3). These compounds also displayed low toxicity profile against
281	mammalian host cells (LC ₅₀ \ge 50 μ M, table 3). Compounds 1c, 1e and 1f did not
282	induce loss of cellular viability after incubation for 96 h with doses up to 98 μ M.
283	Compound 1b maintained mammalian cell viability up to 200 μ M. However, compound
284	1k exhibited moderate toxicity with LC $_{50}$ of $_{\sim}50~\mu\text{M}.$ Compound 1e displayed high SI
285	value (> 50), comparable to benznidazole. Compounds 1b, 1c, 1f displayed
286	considerable selectivity with SI values >38, >19 and >36 respectively. Although
287	compound 1k showed moderate potency against intracellular parasites, it showed
288	poor selectivity (SI value = 4.7). An interesting observation from the above results
289	(Table 3) is that compounds with ortho-substitutions displayed better selectivity and
290	toxicity profiles when compared with meta-substituted compounds (compare SI and
291	LC_{50} values of 1b with 1c and 1e with 1f) when assayed against intracellular forms of
292	<i>T. cruzi</i> (Tulahuen strain). Compounds (1b , 1c , 1e , 1f and 1k , Table 3) showed good
293	in vitro potency against intracellular forms of T. cruzi (Tulahuen β -Galactosidase
294	transfected strain) were further tested for their activity against bloodstream

276 295	trypomastigotes (Y strain). The results are shown in Table 4. After 2 h of incubation, all
296	compounds showed an EC_{50} of >50 $\mu M,$ similarly as benznidazole. After 24 h of
297	incubation, compounds 1b , 1e and 1k did not show much improvement in the potency.
298	Compound 1c showed large variations in potency possibly due to compound
299	instability. Interestingly, compound $1f$ showed (EC_{50} of ~20 μM) comparable activity to
300	reference compound (EC $_{50}$ of ~16 μM). The predicted binding pose of compound $1f$ is

301	shown in Figure 5 (A). The orientation of the binding pose and the receptor
302	interactions are similar to compound 1 . We have further evaluated all five compounds
303	for their toxicity on primary cell cultures. Uninfected cardiac cells were incubated for 24
304	h with different doses of these compounds and then cell viability evaluated by both
305	light microscopy and colorimetric assay Prestoblue.

Table 4. Activity (EC₅₀ μ M - Mean ± SD – 2 and 24h) against bloodstream trypomastigotes of T. cruzi (Y strain) besides toxicity upon cardiac cells (24h) and selectivity profile.

Compound	EC₅₀ µM		LC µM	SI (LC /EC – 24 h) μΜ
	2 h	24 h	50	50 50
Benznidazole	>50	16.86 ± 3.34	>200	>12
1b	>50	>50	>200	>4
1c	>50	46.98 ± 10.93	93.97 ± 11.73	3.71
1e	>50	38.6 ± 6	>200	>5.2
1f	>50	20.62 ± 6.12	66 ± 25.82	3.20
1k	>50	39.37 ± 6.37	ND*	ND*
			_	

308 * ND: Not determined

309 Compounds **1b**, **1e** did not induce loss of cellular viability after incubation for 24 h up

to 200 μ M (Table 4). Compounds **1c** and **1f** displayed low toxicity with LC₅₀ values of

 \sim 93 and \sim 66 μ M, respectively.

312 Structure Activity Relationship (SAR) Analysis

Next, the structure activity relationships of these compounds (1a-1q) is discussed

according to their effect towards the infection level and the EC₅₀ values against the

intracellular parasites. Compounds **1a-1g** (Table 3) that differ in the substitution

316

317

318

319

pattern on the benzyl ring showed varied levels of potency. Compound 1 with ortho-
chloro substitution displayed potency with an EC_{50} of ~3.86 $\mu M.$ The switching of
electron withdrawing, bulky chlorine from ortho- position (1) to para- position (1a)
resulted in loss of potency. Replacement of ortho- chloro substituent with fluoro group
(1b) displayed potency with an EC_{50} of ~5.30 $\mu M,$ and the switching of fluoro group

321	from ortho- (1b) to meta- position (1c) displayed similar potency. However, para-
322	fluoro substituted compound (1d) showed poor potency. Replacement of bulky,
323	electron withdrawing ortho- chloro group (1) with isosteric, isolipophilic and electron
324	donating methyl group (1e) displayed improved potency with an EC $_{50}$ of ~2.20 $\mu M,$ and
325	the switching of methyl group from <i>ortho</i> - (1e) to <i>meta</i> - position (1f) retained the
326	potency with an EC ₅₀ of ~2.70 μ M. However, <i>para</i> - methyl substitution (1g) resulted in
327	complete loss of potency, suggesting that the substitution pattern on the aromatic ring
328	is important. The general trend of activity being ortho- and meta- substituted
329	compounds are more potent than <i>para</i> - substituted compounds (compare 1 with 1a;
330	compare 1b , 1c with 1d ; compare 1e , 1f with 1g). Overall, <i>para</i> - substitutions
331	(chloro/fluoro/methyl; 1a, 1d, 1g) on the benzyl ring generally displayed poor or no
332	potency. Docking studies on these compounds suggest that para- substitutions
333	protrude from the hydrophobic cleft towards a more solvent exposed area, while the
334	ortho- and meta- substitutions allow better interactions with the hydrophobic cleft. This
335	may explain why all substitutions at the <i>para</i> - position (1a , 1d , 1g) are not tolerated.
336	The results suggest that the electronic properties of the substituents (chlorine moiety
337	being electron withdrawing and methyl moiety being electron donating) did not
338	influence the activity; however, the position specific and hydrophobic effects of the
339	substituents on the benzyl ring are mainly involved in the variation in potency. We next

340	turned our attention to compounds 1h-1n with <i>ortho</i> - methoxy substituted phenyl ring.
341	Compound 1h with unsubstituted benzyloxy group showed poor potency. Compounds
342	with ortho- (1i, 1i), meta- (1j, 1m) and para- substitutions (1n) on the benzyl ring also
343	displayed poor or no potency, the only exception is para-chloro substitution which
344	resulted in a comparatively potent compound 1k. Our binding mode analysis of
345	compounds 1i, 1j, 1I and 1m suggested that the introduction of a bulky methoxy group

346	at the ortho- position restricts the conformation of the phenyl ring, thereby resulting in
347	a different orientation, losing key interactions such as coordination with the heme iron,
348	π-π stacking with Tyr103 and hydrogen bonding with Tyr116. This appears to have
349	resulted in loss of potency for these compounds. Interestingly, in the top scored
350	binding poses of compounds 1h, 1k and 1n reverse binding modes were observed,
351	where the pyrazolo [3,4-e] [1,4] thiazepin-7-one scaffold is placed in the hydrophobic
352	binding cleft, benzyloxy moiety is placed in the B'/C loop and I helix region. This
353	reverse binding mode do not appear to have favoured the potency of compounds 1h
354	and 1n . However, for compound 1k , methoxy phenyl ring is in a different orientation
355	compared to 1h and 1n , making strong hydrophobic interactions with the surrounding
356	amino acids, thereby displaying moderate $~$ potency with an EC_{50} of ~10.85 $\mu M.$ The
357	364 365 366 367 368 369

Figure 5: A) Predicted binding pose of compound **1f** (green sticks; XP GScore -8.58) in the hydrophobic tunnel. Heme iron co-ordination is represented as magenta dotted lines (2.30 Å). π - π stacking interactions between pyrazole ring and heme macromolecule in teal dashed lines. Side chains of the amino acid residuesTYR103 (wire format in black) TYR116 (wire format in magenta) involved in interactions with compound **1f** through π - π stacking (teal dashed lines) and hydrogen bonding (magenta dashed lines) respectively. All the interactions of this compound are similar to compound **1** (pose 1). B) Predicted reverse binding pose of **1k** (orange sticks; XP GScore -10.64), pyrazolo [3,4-e] [1,4] thiazepin-7-one ring system is at the entrance of the tunnel and p-chlorophenyl moiety is oriented towards the heme; Heme in yellow sticks, Fe in red CPK model, Van der Waals surface around the compound **1k** in mesh format, nitrogen in blue, oxygen in red, sulfur in yellow. Side chain carbonyl oxygen of the amino acid residue MET358 (wire format in magenta) is involved in

)

b i

ndi ngpo 371 hydrogen bonding (magenta dashed lines) interaction with the NH moiety (pyrazole ring) of compound 1k. 372 We finally probed the contribution of the substituted benzyl group of the pyrazolo [3,4-373 e] [1,4] thiazepin-7-one ring system towards the potency by screening a small set of 374 analogues with aliphatic substitutions (Type II). Replacement of benzyl ring with 375 isopropyl (1o), n-propyl (1p) and allyl (1q) moieties completely abolished the potency 376 altogether, suggesting that substituted benzyl ring plays an important role in stabilising 377 the complex by forming strong hydrophobic interactions with the hydrophobic cleft. 378 Moreover, perhaps these aliphatic substitutions do not fill the hydrophobic pocket 379 enough, which was needed for potency and stability. Overall, these results suggest 380 that the coordination with the heme iron, π - π stacking and hydrogen bond interactions 381 in the B'helix and B'/C loop region, and the hydrophobic interactions with the residues 382 surrounding the hydrophobic tunnel are crucial for the potency of this series of 383

384 compounds.

Overall, **1e** and **1f** were the more promising compounds regarding potency and selectivity profiles in both the intracellular (Tulahuen) and bloodstream trypomastigote (Y strain) forms of *T. cruzi* when compared to **1b**, **1c**, and **1k**. Hence, as **1e** showed poor solubility profile, we have further evaluated compounds **1** and **1f** for their *in vivo*

activity in mouse models of acute *T.cruzi* infection.

390 Evaluation of compounds in vivo

391	The in vivo efficacy of the compound 1 was evaluated using non-toxic doses
392	(previously determined in acute mice toxicity tests, showing an NOAEL > 50 mg/kg -
393	i.p., data not shown) using 5, 10 and 20 mg/kg/daily doses. Bz was tested in parallel at
394	its optimal dose of 100 mg/kg [22]. The administration of compound 1 for five days

resulted in a mild reduction in the parasitemia peak levels, being much lower than Bz	-
which reached 100 % of peak suppression. The CYP51 inhibitor reached 30, 38 and	
43% of reduction in respective doses of 5, 10 and 20 mg/kg/day at the peak of	-
parasitemia, (<i>Figure 6</i>). Regarding the mortality, while Bz guaranteed 100 % animal	
survival, all treated animals with compound 1, died (<i>Figure 7</i>). Unfortunately, using the	:
same mouse experimental model of <i>T.cruzi</i> infection, the administration for five	ł
consecutive days of 5-20 mg/kg of compound 1f (non-toxic doses based on previous	

402 acute toxicity assays using female Swiss mice) did not induce parasitemia decrease
403 neither protect against animal mortality. Bz was able to completely suppress
404 parasitemia peak (8 dpi) and gave 100 % mice survival (data not shown).

Figure 6. In vivo effect of Compound 1 (5-20 mg/kg) and Bz (100 mg/kg) upon T.cruzi
 parasitemia levels using an mouse model of acute infection (Y strain).mpk = mg/kg; DPI: Days
 post-infection.

Figure 7. In vivo effect of Compound 1 (5-20 mg/kg) and Bz (100 mg/kg) upon animal
411 mortality induced by T.cruzi infection using an mouse model of acute infection (Y strain). mpk
412 = mg/kg; DPI: Days post-infection.
413
414

416 3. Conclusion

417	Only two drugs are available for the treatment of Chagas disease, and both have
418	limited efficacy in addition to several adverse effects. So the search for more effective
419	therapeutic alternatives is urgently needed, to face these limitations CYP51 inhibitors
420	were suggested due to its specific and selective mechanism of action. In this study we
421	have focused on the initial lead optimization of pyrazolo[3,4-e][1,4]thiazepin based
422	lead compound 1. This compound displayed comparable activity with nifurtimox and
423	benznidazole, being potent against multiple strains (Sylvio-X10/7, Tulahuen and Y
424	strain) and forms of <i>T. cruzi</i> . Fluorescence based functional assay confirmed that the

 $_{425}$ mode of action of lead compound **1** is via inhibition of CYP51_{Tc}. Structure based drug

- design studies predicted the binding interactions of lead compound **1** with CYP51_{Tc} to
- 427 be similar to Posaconazole and Fluconazole. A small library of analogues of
428 compound 1 were evaluated for their potency and selectivity profiles against both the 429 intracellular (Tulahuen) and bloodstream trypomastigote (Y strain) forms of T. cruzi. This resulted in interesting SARs that are in good agreement with our predicted 430 binding modes. Compound 1f showed most promising anti-T.cruzi activity. Lead 431 compound 1 and compound 1f were further evaluated for their in vivo activity in mouse 432 433 models of acute T.cruzi infection. Compound 1 is only partially effective in the reduction of parasitemia possibly due to limited permeability and solubility 434 characteristics. Compound 1f failed to reduce the parasitemia possibly due to poor 435 permeability. Solubility and permeability are important physicochemical characteristics 436 of drug like compounds that reflect their bioavailability. The CYP51_{Tc} inhibitors 437 described here provide an excellent template for further lead optimization of 438 pyrazolo[3,4-e][1,4]thiazepin based analogues with improved solubility and 439 permeability properties that may facilitate the anti-T.cruzi drug development. 440

Acknowledges: The authors are in debt to Dr. Jennifer Riley, Dr. John Thomas and
Dr. Manu De Rycker (University of Dundee) for help with generating data associated
with CYP51 inhibition assay, potency and rate of kill assays (Silvio X10/7 strain). We
would also like to thank Dr. Rhodri Owen (University of East London) for providing
HPLC support and for all technical support offering by Marcos Meuser

446	(LBC/IOC/Oswaldo Cruz Foundation) and Dr. Cristina Berzal (Complutense University
447	of Madrid). The present study was supported by grants from Fundação Carlos Chagas
448	Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho
449	Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Oswaldo
450	Cruz, PDTIS, PAEF/CNPq/Fiocruz, CAPES and University of East London. MNCS is
451	research fellow of CNPq and CNE research.

452 **4. Experiment**

453	Compound database preparation: All the compounds in the dataset were processed
454	through concord for the three-dimensional structure generation (mol2 files).
455	Compounds with inappropriate isomeric specifications, compounds containing
456	disallowed atoms in terms of valency and compounds with errors in ring definition are
457	excluded from the co-ordinate generation. These compounds were converted into SLN
458	format (SYBYL Line Notation) using UNITY translate module in SYBYL Version 7.3
459	(Tripos) [23]. The selector module was used to generate two dimensional fingerprints
460	and tanimoto distances. All the compounds in this study were purchased from
461	ASINEX.

462 Molecular docking: Molecular modelling studies were performed primarily using
463 Schrödinger drug design software suite (Schrödinger Release 2017-2) [24].

Protein preparation: The CYP51_{Tc} (PDB: 4C27 with a resolution of 1.95 A°) protein structure was retrieved from Protein Data Bank. The protein was initially prepared using the Protein Preparation Wizard module of Schrödinger suite that prepares the protein by adding hydrogens, assigning correct bond orders, creating zero bond orders to metals, fixing errors like missing side chains and adjusting the ionisation and tautomeric states (via Epik). We have deleted all the water molecules, chloride ions

470	and solvents (ethylene glycol) from the protein. Optimisation of the hydrogen bonding
471	network and the orientation of the hydroxyl/thiol groups, terminal amide groups in Asn
472	and GIn, and His states was carried out using the ProtAssign algorithm. Finally,
473	restrained minimization was carried out using all atoms OPLS3 force fields, with
474	converge heavy atoms to RMSD set to 0.3 Ă (default).

	ACCEITED MANUSCRITT
475	Ligand Preparation: All the compounds were prepared using Ligprep module, which
476	performed addition of hydrogens, 2D to 3D conversion, generation of ionization and
477	tautomeric states including metal binding states (via Epik) at physiological pH 7.0 \pm
478	2.0, and also generated possible stereoisomers and ring conformations using default
479	settings. All the compounds were energy minimised using OPLS3 force fields.
480	Docking studies: The Receptor Grid generation was carried out by identifying the
481	ligand in the 4C27 crystal structure and excluding it from the grid generation. The grid
482	covers the entire binding site, which includes the heme iron macromolecule. Metal
483	coordination constraint was applied at the Fe atom of the heme that defines an
484	interaction between the ligand atom and the heme iron. Docking of compounds was
485	carried out using Schrödinger GLIDE, in extra precision (XP) mode.
486	CYP51 inhibitory assay: The CYP51 assay was carried out as described in [21]. All
487	the potency assays and rate of kill assays with <i>T. cruzi</i> Silvio X10/7 strain were carried
488	out as described in [25].
489	Spectroscopic data analysis and compound purity assessment by HPLC

All 18 compounds were purchased directly from Asinex and used as supplied unless 490 otherwise stated. Accurate mass and nominal mass measurements were performed 491 using Bruker micrOTOF mass spectrometer. All ¹HNMR spectra were recorded in 492

Y

493	deutero-DMSO in 5 mm tubes, with tetramethylsilane as an internal standard, using a
494	Bruker instrument. Chemical shifts (δ) are reported in ppm, and coupling constants (J)
495	are given in Hz. Signals are represented by s (singlet), d (doublet), t (triplet), q
496	(quartet), dq (double quartet) m (multiplet), bs (broad singlet), and dd (double doublet).
497	HPLC was carried out using Agilent-1200 instrument. Column: Agilent eclipse plus
498	C18 (150mm $ imes$ 4.6mm, 5 μ m particle size), mobile phase 0.01% TFA in

499

500

501

502

acetonitrile/water (5% to 95% organic over 20min at 1mL/min), 10 μ L injection.
Detection was at 254nm, runtime 25 min. All the samples were prepared by dissolving
the 5mg of compound in 0.7 mL of d ⁶ -DMSO (Sample solution prepared for HNMR
was analyzed by HPLC). Blank (without the compound) d ⁶ -DMSO was used as a

reference standard. Most of the compounds displayed >90% purity except compounds 503

1h (77%), 1j (88%), 1l (87%) and 1n (84%). Refer to the supporting information for 504

complete data on HPLC purity analysis. Isomer ratios of the compounds were 505 calculated from ¹H-NMR spectra based on the CH₃ signal (s) from substituted pyrazole 506

507 ring of the one of the isomer against CH₃ signal (s) from substituted pyrazole ring of 508 the other isomer.

4-[4-(2-Chloro-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-509

e][1,4]thiazepin-7-one (**Compound 1**). Mixture of two isomers (98:2), $\delta_{\rm H}$ /ppm (400 510 MHz, d⁶-DMSO): Major isomer peaks are at 12.32 (1H, bs, NH from 3-pyrazole ring), 511 512 9.66 (1H, s, NH from sec.amide), 7.62-7.55 (1H, m, Ar-H), 7.54-7.46 (1H, m, Ar-H), 7.43-7.34 (2H, m, Ar-H), 7.21 (2H, d, J = 8.7 Hz, Ar-H), 6.94 (2H, d, J = 8.7 Hz, Ar-H), 513 5.56 (1H, s, methine from [1,4] thiazepin ring), 5.11 (2H, s, CH₂), 3.68 (1H, q, J = 7.0, 514 515 methine from [1, 4] thiazepin ring), 1.91 (3H, s, CH₃ from pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH₃ from [1, 4] thiazepin ring); Observable minor isomer peaks are at 9.86 516 (1H, s, NH from sec.amide), 7.0 (2H, d, J = 8.8 Hz, Ar-H), 5.33 (1H, s, methine from 517 [1, 4] thiazepin ring), 5.14 (2H, s, CH₂), 1.69 (3H, s, CH₃ from pyrazole ring), 1.08 (3H, 518

- 519 d, J = 7.1 Hz, CH₃ from [1, 4] thiazepin ring). HRMS-m/z (ESI): found 414.1046 520 $(C_{21}H_{22}N_3O_2S [M + H]^+)$ requires 414.0965.
- 521 4-[4-(4-Chloro-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-
- 522 *e][1,4]thiazepin-7-one* (1a). Mixture of two isomers (96:4), δ_H /ppm (400 MHz, d⁶-

523	DMSO): Major isomer peaks are at 12.31 (1H, s, NH from 3-pyrazole ring), 9.65 (1H,
524	s, NH from sec.amide), 7.48-7.41 (4H, m, Ar-H), 7.19 (2H, d, J = 8.7 Hz, Ar-H), 6.91
525	(2H, d, J = 8.7 Hz, Ar-H), 5.55 (1H, s, methine from [1, 4] thiazepin ring), 5.05 (2H, s,
526	CH ₂), 3.67 (1H, q, J = 7.04 Hz, methine from [1, 4] thiazepin ring), 1.90 (3H, s, CH ₃
527	from pyrazole ring), 1.18 (3H, d, J = 7.08 Hz, CH_3 from [1,4] thiazepin ring);
528	Observable minor isomer peaks are at 9.86 (1H, s, NH from sec.amide), 6.97 (2H, d, J
529	= 8.7 Hz, Ar-H), 5.32 (1H, s, methine from [1, 4] thiazepin ring), 5.08 (2H, s, CH ₂), 1.68
530	(3H, s, CH ₃ from pyrazole ring), 1.07 (3H, d, J = 7.2 Hz, CH ₃ from [1, 4] thiazepin ring).
531	HRMS-m/z (ESI): found 414.1042 ($C_{21}H_{22}N_3O_2S [M + H]^+$), requires 414.0965.
532	4-[4-(2-Fluoro-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-
533	e][1,4]thiazepin-7-one (1b). Mixture of two isomers (95:5), δ_H /ppm (400 MHz, d ⁶ -
534	DMSO): Major isomer peaks are at 12.31 (1H, bs, NH from 3-pyrazole ring), 9.66 (1H,
535	s, NH from sec.amide), 7.58-7.50 (1H, m, Ar-H), 7.46-7.37 (1H, m, Ar-H), 7.29-7.15
536	(2H, m, Ar-H) this multiplet is overlapped with doublet from the aromatic ring that is
537	directly attached to the pyrazolo[3, 4-e][1, 4]thiazepin basic scaffold, 7.20 (2H, d, J =
538	8.7 Hz, Ar-H), 6.94 (2H, d, J = 8.7 Hz, Ar-H), 5.56 (1H, s, methine from [1, 4] thiazepin
539	ring), 5.09 (2H, s, CH ₂), 3.68 (1H, q, J = 7.0 Hz, methine from [1, 4] thiazepin ring),
540	1.91 (3H, s, CH ₃ from pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH ₃ from [1,4] thiazepin
541	ring); Observable minor isomer peaks are at 9.85 (1H, s, NH from sec.amide), 6.94

542 (2H, d, J = 8.7 Hz, Ar-H), 5.56 (1H, s, methine from [1, 4] thiazepin ring), 5.11 (2H, s,

543 CH₂), 1.68 (3H, s, CH₃ from pyrazole ring), 1.07 (3H, d, J = 7.2 Hz, CH₃ from [1, 4] 544 thiazepin ring). ¹⁹FNMR: 118.41 ppm. HRMS-m/z (ESI): found 398.1341 545 $(C_{21}H_{21}FN_3O_2S [M + H]^+)$, requires 398.1260.

546	4-[4-(3-Fluoro-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-
547	e][1,4]thiazepin-7-one (1c). Mixture of two isomers (86:14), δH/ppm (400 MHz, d ⁶ -
548	DMSO): Major isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring), 9.65 (1H,
549	s, NH from sec.amide), 7.47-7.38 (1H, m, Ar-H), 7.31-7.23 (2H, m, Ar-H), 7.16-7.12
550	(1H, m, Ar-H) this multiplet is overlapped with doublet from the aromatic ring that is
551	directly attached to the pyrazolo[3, 4-e][1, 4]thiazepin basic scaffold, 7.19 (2H, d, J =
552	8.7 Hz, Ar-H), 6.92 (2H, d, J = 8.7 Hz, Ar-H), 5.55 (1H, s, methine from [1, 4] thiazepin
553	ring), 5.08 (2H, s, CH ₂), 3.67 (1H, q, J = 7.03 Hz, methine from [1, 4] thiazepin ring),
554	1.90 (3H, s, CH ₃ from pyrazole ring), 1.19 (3H, d, J = 7.08 Hz, CH ₃ from [1,4] thiazepin
555	ring); Observable minor isomer peaks are at 9.85 (1H, s, NH from sec.amide), 6.97
556	(2H, d, J = 8.7 Hz, Ar-H), 5.32 (1H, s, methine from [1, 4] thiazepin ring), 5.10 (2H, s,
557	CH ₂), 3.24 (1H, q, J = 1.67 Hz), 1.67 (3H, s, CH ₃ from pyrazole ring), 1.06 (3H, d, J =
558	7.2 Hz, CH ₃ from [1, 4] thiazepin ring). 19 FNMR: 113.20 ppm. HRMS-m/z (ESI): found
559	398.1341 ($C_{21}H_{21}FN_{3}O_{2}S$ [M + H] ⁺), requires 398.1260.
560	4-[4-(4-Fluoro-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-
561	e][1,4]thiazepin-7-one (1d). Mixture of two isomers (96:4), δH/ppm (400 MHz, d ⁶ -
562	DMSO): Major isomer peaks are at 12.33 (1H, bs, NH from 3-pyrazole ring), 9.65 (1H,
563	s, NH from sec.amide), 7.54-7.44 (2H, m, Ar-H), 7.25-7.16 (4H, m, Ar-H), 6.91 (2H, d,
564	J = 8.7 Hz, Ar-H), 5.55 (1H, s, methine from [1, 4] thiazepin ring), 5.03 (2H, s, CH ₂),

565 3.67 (1H, q, J = 7.02 Hz, methine from [1, 4] thiazepin ring), 1.90 (3H, s, CH_3 from

566	pyrazole ring), 1.19 (3H, d, J = 7.08 Hz, CH ₃ from [1,4] thiazepin ring); Observable
567	minor isomer peaks are at 9.85 (1H, s, NH from sec.amide), 6.96 (2H, d, J = 8.7 Hz,
568	Ar-H), 5.32 (1H, s, methine from [1, 4] thiazepin ring), 5.05 (2H, s, CH ₂), 1.67 (3H, s,
569	CH ₃ from pyrazole ring), 1.07 (3H, d, J = 7.1 Hz, CH ₃ from [1, 4] thiazepin ring).

⁵⁷⁰ ¹⁹FNMR: 114.49 ppm. HRMS- m/z (ESI): found 398.1340 (C₂₁H₂₁FN₃O₂S [M + H]⁺),
 ⁵⁷¹ requires 398.1260.

572 3,6-Dimethyl-4-[4-(2-methyl-benzyloxy)-phenyl]-4,8-dihydro-1H-pyrazolo[3,4-

e][1,4]thiazepin-7-one (1e). Mixture of two isomers (97:3), δH/ppm (400 MHz, d⁶-573 DMSO): Major isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring), 9.66 (1H, 574 s, NH from sec.amide), 7.38 (1H, d, J = 7.30 Hz, Ar-H), 7.28-7.14 (5H, m, Ar-H), 6.94 575 (2H, d, J = 8.7 Hz, Ar-H), 5.56 (1H, s, methine from [1, 4] thiazepin ring), 5.03 (2H, s, 576 CH₂), 3.68 (1H, q, J = 7.0 Hz, methine from [1, 4] thiazepin ring), 2.30 (3H, s, ortho 577 <u>CH₃</u>), 1.91 (3H, s, CH₃ from pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH₃ from [1,4] 578 thiazepin ring); Observable minor isomer peaks are at 9.85 (1H, s, NH from 579 sec.amide), 6.99 (2H, d, J = 8.7 Hz, Ar-H), 5.32 (1H, s, methine from [1, 4] thiazepin 580 ring), 5.06 (2H, s, CH₂), 2.32 (3H, s, ortho <u>CH₃</u>), 1.68 (3H, s, CH₃ from pyrazole ring), 581 1.08 (3H, d, J = 7.2 Hz, CH₃ from [1, 4] thiazepin ring). HRMS- m/z (ESI): found 582 $394.1586 (C_{22}H_{24}N_3O_2S [M + H]^+)$, requires 394.1511. 583

584 3,6-Dimethyl-4-[4-(3-methyl-benzyloxy)-phenyl]-4,8-dihydro-1H-pyrazolo[3,4-

e][1,4]thiazepin-7-one (1f). Mixture of two isomers (66:34), δH/ppm (400 MHz, d⁶DMSO): Major isomer peaks are at 12.31 (1H, bs, NH from 3-pyrazole ring), 9.65 (1H,
s, NH from sec.amide), 7.32-7.09 (6H, m, Ar-H), 6.91 (2H, d, J = 8.8 Hz, Ar-H), 5.55
(1H, s, methine from [1, 4] thiazepin ring), 5.01 (2H, s, CH₂), 3.67 (1H, q, J = 7.0 Hz,

589	methine from [1, 4] thiazepin ring), 2.31 (3H, s, meta $\underline{CH_3}$), 1.90 (3H, s, CH ₃ from
590	pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH_3 from [1, 4] thiazepin ring); Observable
591	minor isomer peaks are at 9.85 (1H, s, NH from sec.amide), 7.32-7.09 (6H, m, Ar-H),
592	6.96 (2H, d, J = 8.8 Hz, Ar-H), 5.32 (1H, s, methine from [1,4] thiazepin ring), 5.03(2H,
593	s, CH ₂), 3.24 (1H, q, J = 7.2 Hz methine from [1, 4] thiazepin ring), 2.31 (3H, s, meta

⁵⁹⁴ <u>CH₃</u>), 1.70 (3H, s, CH₃ from pyrazole ring), 1.01 (3H, d, J = 7.2 Hz, CH₃ from [1,4] ⁵⁹⁵ thiazepin ring). HRMS; m/z (ES): found 394.1580 ($C_{22}H_{24}N_3O_2S$ [M + H]⁺), requires ⁵⁹⁶ 394.1511.

3,6-Dimethyl-4-[4-(4-methyl-benzyloxy)-phenyl]-4,8-dihydro-1H-pyrazolo[3,4-597 e][1,4]thiazepin-7-one (1g). Mixture of two isomers (69:31), δH/ppm (400 MHz, d⁶-598 599 DMSO): Major isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring), 9.65 (1H, 600 s, NH from sec.amide), 7.36-7.27 (2H, m, Ar-H), 7.22-7.12 (4H, m, Ar-H), 6.90 (2H, d, J = 8.7 Hz, Ar-H), 5.55 (1H, s, methine from [1, 4] thiazepin ring), 5.00 (2H, s, CH₂), 601 3.67 (1H, q, J = 7.0 Hz, methine from [1, 4] thiazepin ring), 2.29 (3H, s, para <u>CH₃</u>), 602 1.90 (3H, s, CH₃ from pyrazole ring), 1.18 (3H, d, J = 7.08 Hz, CH₃ from [1,4] thiazepin 603 ring); Observable minor isomer peaks are at 9.85 (1H, s, NH from sec.amide), 7.36-604 7.27 (2H, m, Ar-H), 7.22-7.12 (4H, m, Ar-H), 6.94 (2H, d, J = 8.8 Hz, Ar-H), 5.31 (1H, 605 s, methine from [1, 4] thiazepin ring), 5.01 (2H, s, CH₂), 3.24 (1H, q, J = 7.2 Hz 606 methine from [1, 4] thiazepin ring), 2.30 (3H, s, para CH₃), 1.67 (3H, s, CH₃ from 607 pyrazole ring), 1.07 (3H, d, J = 7.2 Hz, CH₃ from [1,4] thiazepin ring). HRMS; m/z (ES): 608 found 394.1582 ($C_{22}H_{24}N_3O_2S [M + H]^+$) requires 394.1511. 609 4-(4-Benzyloxy-3-methoxy-phenyl)-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-610

e][1,4]thiazepin-7-one (1h). Mixture of two isomers (63:37), δH/ppm (400 MHz, d⁶-

DMSO): First isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring), 9.66 (1H,

613 s, NH from sec.amide), 7.50-7.27 (5H, m, Ar-H), 7.01-6.89 (2H, m, Ar-H), 6.75 (1H, dd,

614	J = 8.3 + 2.0 Hz,	Ar-H), 5.51 (1H, s	, methine from [1,	4] thiazepin ring), 5.02 (2H, s,
-----	-------------------	--------------------	--------------------	-------------------	-----------------

615 CH₂), 3.71 (3H, s, O<u>CH₃</u>), 3.67 (1H, q, J = 7.0 Hz, methine from [1, 4] thiazepin ring),

616 1.95 (3H, s, CH₃ from pyrazole ring), 1.19 (3H, d, J = 7.04 Hz, CH₃ from [1,4] thiazepin

ring); Observable second isomer peaks are at 9.84 (1H, s, NH from sec.amide), 7.50-

618

619

620

621

622

623

624

625

626

627

628

629

7.27 (5H, m, Ar-H), 7.01-6.89 (2H, m ,Ar-H), 6.63 (1H, dd, J = 8.3 + 1.8 Hz, Ar-H), 5.30
(1H, s, methine from [1, 4] thiazepin ring), 5.04 (2H, s, CH_2), 3.73 (3H, s, OCH_3), 3.30
(1H, q, methine from [1, 4] thiazepin ring, this peak is partly covered by water peak
from DMSO), 1.68 (3H, s, CH ₃ from pyrazole ring), 1.09 (3H, d, J = 7.2 Hz, CH ₃ from
[1,4] thiazepin ring). HRMS; m/z (ES): found 410.1539 ($C_{22}H_{24}N_3O_3S$ [M + H] ⁺)
requires 410.1460.
4-[4-(2-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H-
4-[4-(2-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H- pyrazolo[3,4-e][1,4]thiazepin-7-one (1i). Mixture of two isomers (72:28), δH/ppm (400
<i>4-[4-(2-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H-</i> <i>pyrazolo[3,4-e][1,4]thiazepin-7-one</i> (1i). Mixture of two isomers (72:28), δH/ppm (400 MHz, d ⁶ -DMSO): Major isomer peaks are at 12.31 (1H, bs, NH from 3-pyrazole ring),
4-[4-(2-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H- pyrazolo[3,4-e][1,4]thiazepin-7-one (1i). Mixture of two isomers (72:28), δH/ppm (400 MHz, d ⁶ -DMSO): Major isomer peaks are at 12.31 (1H, bs, NH from 3-pyrazole ring), 9.67 (1H, s, NH from sec.amide), 7.63-7.54 (1H, m, Ar-H), 7.53-7.46 (1H, m, Ar-H),
4-[4-(2-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H- pyrazolo[3,4-e][1,4]thiazepin-7-one (1i). Mixture of two isomers (72:28), δH/ppm (400 MHz, d ⁶ -DMSO): Major isomer peaks are at 12.31 (1H, bs, NH from 3-pyrazole ring), 9.67 (1H, s, NH from sec.amide), 7.63-7.54 (1H, m, Ar-H), 7.53-7.46 (1H, m, Ar-H), 7.42-7.34 (2H, m, Ar-H), 7.02-6.90 (2H, m, Ar-H), 6.77 (1H, dd, J = 8.3 + 2.0 Hz, Ar-

- OCH₃), 3.67 (1H, q, J = 7.0 Hz, methine from [1, 4] thiazepin ring), 1.96 (3H, s, CH₃ 630
- from pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH₃ from [1,4] thiazepin ring); Observable 631
- minor isomer peaks are at 9.84 (1H, s, NH from sec.amide), 7.63-7.54 (1H, m, Ar-H), 632
- 7.53-7.46 (1H, m, Ar-H), 7.42-7.34 (2H, m, Ar-H), 7.02-6.90 (2H, m, Ar-H), 6.65 ((1H, 633
- dd, J = 8.3 + 1.80 Hz, Ar-H), 5.31 (1H, s, methine from [1, 4] thiazepin ring), 5.11 (2H, 634
- 635 s, CH₂), 3.74 (3H, s, O<u>CH₃</u>), 3.30 (1H, q, methine from [1, 4] thiazepin ring, this peak
- is partly covered by water peak from DMSO), 1.69 (3H, s, CH₃ from pyrazole ring), 636

637 1.09 (3H, d, J = 7.10 Hz, CH₃ from [1,4] thiazepin ring). HRMS; m/z (ES): found 638 444.1159 ($C_{22}H_{23}CIN_3O_3S [M + H]^+$) requires 444.1070.

639 4-[4-(3-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H-

- 640 *pyrazolo*[3,4-*e*][1,4]thiazepin-7-one (1j). Mixture of two isomers (68:32), δH/ppm (400
- 641 MHz, d⁶-DMSO): First isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring),

642	9.67 (1H, s, NH from sec.amide), 7.52-7.34 (4H, m, Ar-H), 7.03-6.87 (2H, m, Ar-H),
643	6.76 (1H, dd, J = 8.3 + 2.1 Hz, Ar-H), 5.52 (1H, s, methine from [1, 4] thiazepin ring),
644	5.05 (2H, s, CH ₂), 3.72 (3H, s, O <u>CH₃</u>), 3.67 (1H, q, J = 7.0 Hz, methine from [1,4]
645	thiazepin ring), 1.95 (3H, s, CH ₃ from pyrazole ring), 1.20 (3H, d, J = 7.04 Hz, CH ₃
646	from [1,4] thiazepin ring); Observable second isomer peaks are at 9.84 (1H, s, NH
647	from sec.amide), 7.52-7.34 (4H, m, Ar-H), 7.03-6.89 (2H, m ,Ar-H), 6.64 (1H, dd, J =
648	8.2 + 1.9 Hz, Ar-H), 5.30 (1H, s, methine from [1, 4] thiazepin ring), 5.10 (2H, s, CH ₂),
649	3.74 (3H, s, O <u>CH₃</u>), 1.68 (3H, s, CH ₃ from pyrazole ring), 1.09 (3H, d, J = 7.2 Hz, CH ₃
650	from [1, 4] thiazepin ring). HRMS; m/z (ES): found 444.1154 ($C_{22}H_{23}CIN_3O_3S$ [M + H] ⁺)
651	requires 444.1070.

4-[4-(4-Chloro-benzyloxy)-3-methoxy-phenyl]-3,6-dimethyl-4,8-dihydro-1H-

pyrazolo[3,4-e][1,4]thiazepin-7-one (1k). Mixture of two isomers (68:32), δH/ppm (400 653 MHz, d⁶-DMSO): major isomer peaks are at 12.31 (1H, bs, NH from 3-pyrazole ring), 654 655 9.66 (1H, s, NH from sec.amide), 7.51-7.41 (4H, m, Ar-H), 7.00-6.87 (2H, m, Ar-H), 6.75 (1H, dd, J = 8.4 + 2.0 Hz, Ar-H), 5.51 (1H, s, methine from [1, 4] thiazepin ring), 656 657 5.03 (2H, s, CH₂), 3.71 (3H, s, O<u>CH₃</u>), 3.67 (1H, q, J = 7.0 Hz, methine from [1,4] thiazepin ring), 1.95 (3H, s, CH₃ from pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH₃ from 658 659 [1,4] thiazepin ring); Observable minor isomer peaks are at 9.84 (1H, s, NH from 660 sec.amide), 7.51-7.41 (4H, m, Ar-H), 7.00-6.87 (2H, m, Ar-H), 6.63 (1H, dd, J = 8.2 +

661	1.8 Hz, Ar-H), 5.30 (1H, s, methine from [1, 4] thiazepin ring), 5.04 (2H, s, CH ₂), 3.73
662	(3H, s, O <u>CH₃</u>), 3.30 (1H, q, methine from [1, 4] thiazepin ring, this peak is partly
663	covered by water peak from DMSO), 1.67 (3H, s, CH_3 from pyrazole ring), 1.09 (3H, d,
664	J = 7.2 Hz, CH ₃ from [1,4] thiazepin ring). HRMS; m/z (ES): found 444.1157
665	$(C_{22}H_{23}CIN_3O_3S [M + H]^+)$ requires 444.1070.

666	4-[3-Methoxy-4-(2-methyl-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-
667	pyrazolo[3,4-e][1,4]thiazepin-7-one (1). Mixture of two isomers (66:34), δH/ppm (400
668	MHz, d ⁶ -DMSO): major isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring),
669	9.67 (1H, s, NH from sec.amide), 7.43-7.34 (1H, m, Ar-H), 7.28-7.14 (3H, m, Ar-H),
670	7.03-6.91 (2H, m, Ar-H), 6.77 (1H, dd, J = 8.3 + 2.0 Hz, Ar-H), 5.52 (1H, s, methine
671	from [1,4] thiazepin ring), 5.00 (2H, s, CH ₂), 3.70 (3H, s, O <u>CH₃</u>), 3.67 (1H, q, J = 7.0
672	Hz, methine from [1,4] thiazepin ring), 2.30 (3H, s, ortho CH_3), 1.96 (3H, s, CH_3 from
673	pyrazole ring), 1.19 (3H, d, J = 7.0 Hz, CH_3 from [1, 4] thiazepin ring); Observable
674	minor isomer peaks are at 9.84 (1H, s, NH from sec.amide), 7.43-7.34 (1H, m, Ar-H),
675	7.28-7.14 (3H, m, Ar-H), 7.03-6.91 (2H, m, Ar-H), 6.65 (1H, dd, J = 8.2 + 1.8 Hz, Ar-
676	H), 5.30 (1H, s, methine from [1,4] thiazepin ring), 5.02 (2H, s, CH ₂), 3.72 (3H, s,
677	O_{CH_3}), 3.30 (1H, q, methine from [1, 4] thiazepin ring, this peak is partly covered by
678	water peak from DMSO), 2.32 (3H, s, <i>ortho</i> CH ₃), 1.69 (3H, s, CH ₃ from pyrazole ring),
679	1.10 (3H, d, J = 7.12 Hz, CH ₃ from [1, 4] thiazepin ring). HRMS; m/z (ES): found
680	424.1688 ($C_{23}H_{26}N_3O_3S [M + H]^+$) requires 424.1617.

4-[3-Methoxy-4-(3-methyl-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-681

pyrazolo[3,4-e][1,4]thiazepin-7-one (1m). Mixture of two isomers (65:35), δH/ppm (400 682 MHz, d⁶-DMSO): major isomer peaks are at 12.30 (1H, bs, NH from 3-pyrazole ring), 683

9.66 (1H, s, NH from sec.amide), 7.30-7.10 (4H, m, Ar-H), 7.00-6.87 (2H, m, Ar-H), 684

685	6.74 (1H, dd, J = 8.3 + 2.0 Hz, Ar-H), 5.51 (1H, s, methine from [1, 4] thiazepin ring),
686	5.00 (2H, s, CH ₂), 3.71 (3H, s, O <u>CH₃</u>), 3.66 (1H, q, J = 7.07 Hz, methine from [1,4]
687	thiazepin ring), 2.31 (3H, s, <i>meta</i> CH ₃), 1.95 (3H, s, CH ₃ from pyrazole ring), 1.19 (3H,
688	d, J = 7.04 Hz, CH ₃ from [1, 4] thiazepin ring); Observable minor isomer peaks are at

689 9.84 (1H, s, NH from sec.amide), 7.30-7.10 (4H, m, Ar-H), 7.00-6.87 (2H, m, Ar-H),

690	6.62 (1H, dd, J = 8.4 + 2.0 Hz, Ar-H), 5.30 (1H, s, methine from [1,4] thiazepin ring),
691	5.00 (2H, s, CH ₂), 3.73 (3H, s, O <u>CH₃</u>), 3.30 (1H, q, methine from [1,4] thiazepin ring,
692	this peak is partly covered by water peak from DMSO), 2.31 (3H, s, <i>meta</i> CH ₃), 1.68
693	(3H, s, CH ₃ from pyrazole ring), 1.09 (3H, d, J = 7.2 Hz, CH ₃ from [1, 4] thiazepin ring).
694	HRMS; m/z (ES): found 424.1687 ($C_{23}H_{26}N_3O_3S [M + H]^+$) requires 424.1617.
695	4-[3-Methoxy-4-(4-methyl-benzyloxy)-phenyl]-3,6-dimethyl-4,8-dihydro-1H-
696	<i>pyrazolo[3,4-e][1,4]thiazepin-7-one (1n).</i> Mixture of two isomers (62:38), δH/ppm (400
697	MHz, d ⁶ -DMSO): major isomer peaks are at 12.29 (1H, bs, NH from 3-pyrazole ring),
698	9.66 (1H, s, NH from sec.amide), 7.35-7.26 (2H, m Ar-H), 7.24-7.14 (2H, m, Ar-H),
699	7.00-6.87 (2H, m, Ar-H), 6.74 (1H, dd, J = 8.3 + 2.1 Hz, Ar-H), 5.51 (1H, s, methine
700	from [1,4] thiazepin ring), 4.97 (2H, s, CH ₂), 3.70 (3H, s, O <u>CH₃</u>), 3.66 (1H, q, J = 7.0
701	Hz, methine from [1,4] thiazepin ring), 2.29 (3H, s, <i>para</i> CH ₃), 1.95 (3H, s, CH ₃ from
702	pyrazole ring), 1.18 (3H, d, J = 7.0 Hz, CH_3 from [1, 4] thiazepin ring); Observable
703	minor isomer peaks are at 9.84 (1H, s, NH from sec.amide), 7.35-7.26 (2H, m Ar-H),
704	7.24-7.14 (2H, m, Ar-H), 7.00-6.87 (2H, m, Ar-H), 6.62 (1H, dd, J = 8.3 + 1.8 Hz, Ar-
705	H), 5.30 (1H, s, methine from [1,4] thiazepin ring), 4.98 (2H, s, CH ₂), 3.72 (3H, s,
706	O <u>CH₃</u>), 3.29 (1H, q, methine from [1, 4] thiazepin ring, this peak is partly covered by
707	water peak from DMSO), 2.30 (3H, s, <i>para</i> CH ₃), 1.68 (3H, s, CH ₃ from pyrazole ring),

708 709

- 1.0 (3H, d, J = 7.12 Hz, CH_3 from [1, 4] thiazepin ring). HRMS; m/z (ES): found
- 9 424.1687 ($C_{23}H_{26}N_3O_3S[M + H]^+$) requires 424.1617.
- 710 4-(4-Isopropoxy-phenyl)-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-
- one (**1o**). Mixture of two isomers (97:3), δH/ppm (400 MHz, d⁶-DMSO): major isomer
- peaks are at 12.30 (1H, s, NH from 3-pyrazole ring), 9.64 (1H, s, NH from sec.amide),
- 713 7.15 (2H, d, J = 8.68 Hz, Ar-H), 6.80 (2H, d, J = 8.76 Hz, Ar-H), 5.54 (1H, s, methine

714	from [1, 4] thiazepin ring), 4.54 (1H, hept, <u>CH</u> of isopropyl), 3.67 (1H, q, J = 7.0 Hz,
715	methine from [1, 4] thiazepin ring), 1.90 (3H, s, CH_3 from pyrazole ring), 1.23 (6H, d, J
716	= 6.0 Hz, $(CH_3)_2$ of isopropyl), 1.18 (3H, d, J = 7.08 Hz, CH ₃ from [1,4] thiazepin ring);
717	Observable minor isomer peaks are at 9.83 (1H, s, NH from sec.amide), 6.85 (2H, d, J
718	= 8.7 Hz, Ar-H), 5.30 (1H, s, methine from [1, 4] thiazepin ring), 1.67 (3H, s, CH ₃ from
719	pyrazole ring), 1.07 (3H, d, J = 7.1 Hz, CH ₃ from [1, 4] thiazepin ring). HRMS; m/z
720	(ES): found 332.1428 ($C_{17}H_{22}N_3O_2S$ [M + H] ⁺) requires 332.1354.
721	3,6-Dimethyl-4-(4-propoxy-phenyl)-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-one
722	(1p). Mixture of two isomers (85:15), δH/ppm (400 MHz, d ⁶ -DMSO): major isomer
723	peaks are at 12.30 (1H, s, NH from 3-pyrazole ring), 9.65 (1H, s, NH from sec.amide),
724	7.16 (2H, d, J = 8.7 Hz, Ar-H), 6.82 (2H, d, J = 8.7 Hz, Ar-H), 5.55 (1H, s, methine
725	from [1, 4] thiazepin ring), 3.87 (2H, t, J = 6.52 Hz, O <u>CH₂</u> of n-propyl), 3.67 (1H, q, J =
726	7.0 Hz, methine from [1, 4] thiazepin ring), 1.90 (3H, s, CH_3 from pyrazole ring), 1.76-
727	1.62 (2H, m, CH ₂ of n-propyl), 1.19 (3H, d, J = 7.0 Hz, CH ₃ from [1,4] thiazepin ring),
728	0.95 (3H, t, J = 7.45 Hz, CH ₃ of n-propyl); Observable minor isomer peaks are at 9.84
729	(1H, s, NH from sec.amide), 7.13 (2H, d, J = 8.64 Hz, Ar-H), 6.86 (2H, d, J = 8.72 Hz,
730	Ar-H), 5.30 (1H, s, methine from [1, 4] thiazepin ring), 3.90 (2H, t, J = 6.56 Hz, O <u>CH₂</u>
731	of n-propyl), 3.23 (1H, q, J = 7.17 Hz this peak is partly covered by water peak from
732	DMSO), 1.76-1.62 (2H, m, CH ₂ of n-propyl), 1.06 (3H, d, J = 7.20 Hz, CH ₃ from [1, 4]

- thiazepin ring), 0.97 (3H, t, J = 7.47 Hz, CH₃ of n-propyl); HRMS; m/z (ES): found 332.1428 ($C_{17}H_{22}N_3O_2S [M + H]^+$) requires 332.1354.
- 735 4-(4-Allyloxy-phenyl)-3,6-dimethyl-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-one
- 736 (1q). Mixture of two isomers (97:3), δH/ppm (400 MHz, d⁶-DMSO): major isomer
- peaks are at 12.31 (1H, s, NH from 3-pyrazole ring), 9.65 (1H, s, NH from sec.amide),

738	7.17 (2H, d, J = 8.7 Hz, Ar-H), 6.85 (2H, d, J = 8.7 Hz, Ar-H), 6.09-5.94 (1H, m, =CH of
739	allyl), 5.55 (1H, s, methine from [1, 4] thiazepin ring), 5.37 [1H, dq, J = 1.71 + 17.25
740	Hz, =CH ₂ (H _a -terminal vinyl proton on SP ² carbon)], 5.23 [1H, dq, J = $1.4/1.6 + 10.5$
741	Hz, =CH ₂ (H _b -terminal vinyl proton on SP ² carbon)], 4.52 [1H, t, J = 1.48, O-CH ₂ (H _a -
742	allyl proton adjacent to SP ² carbon)], 4.51 [1H, t, J = 1.48, O-CH ₂ (H _b -allyl proton
743	adjacent to SP ² carbon)], 3.67 (1H, q, J = 7.1 Hz, methine from [1, 4] thiazepin ring),
744	1.90 (3H, s, CH ₃ from pyrazole ring), 1.19 (3H, d, J = 7.1 Hz, CH ₃ from [1,4] thiazepin
745	ring), Observable minor isomer peaks are at 9.84 (1H, s, NH from sec.amide), 6.87
746	(2H, d, J = 8.72 Hz, Ar-H), 5.31 (1H, s, methine from [1, 4] thiazepin ring), 1.67 (3H, s,
747	CH ₃ from pyrazole ring), 1.07 (2H, d, J = 7.1 Hz, CH ₃ from [1, 4] thiazepin ring),
748	HRMS; m/z (ES): found 330.1272 ($C_{17}H_{20}N_3O_2S$ [M + H] ⁺) requires 330.4180.
749	Compounds preparation: Benznidazole (Bz) (N-benzyl-2-nitroimidazole-1-
750	acetamide) was obtained from the Pharmaceutical Laboratory of the State of
751	Pernambuco (LAFEPE, Brazil) and used in all trials as reference drug. All the CYP51
752	inhibitor compounds were purchased from Asinex commercial vendor, diluted in
753	dimethylsulfoxide (DMSO - in vitro) or in trappsol (in vivo) not reaching vehicle levels
754	above 0.6 % and 20 % for <i>in vitro</i> and <i>in vivo</i> assays, respectively.

T. cruzi parasites: Bloodstream trypomastigotes (BT - Y strain) were obtained from heart puncture of infected male Swiss Webster mice at parasitemia peak. The parasites were purified and resuspended in RPMI 1640 medium (pH 7.2 to 7.4)

- vithout phenol red (Gibco BRL) supplemented with 10% fetal bovine serum (FBS) and
- 2 mM glutamine, as reported previously [26, 27] The analysis upon intracellular forms
- 760 *T. cruzi* (Tulahuen strain transfected with *Escherichia coli* β-galactosidase gene) [28]

⁷⁶¹ was conducted using L929 cell lineages that were infected with tissue culture-derived
⁷⁶² trypomastigotes using a 10:1 parasite/ host cell ratio [27].

763 In vitro assays

764 Mammalian cell culture: The cardiac cells (CC) were obtained from Swiss embryos

765 Webster mice as described by Meirelles and coworkers [29], and seeded 96 well plate.

The cardiac cell cultures were stored at 37℃ in Du lbecco's modified Eagle medium

767 (DMEM; without phenol red; Sigma-Aldrich) supplemented with 5% fetal bovine serum,

2.5 mM CaCl₂, 1 mM L-glutamine, streptomycin, and 2% chicken embryo extract [22,

⁷⁶⁹ 29]. Moreover, L929 fibroblastic cells were cultivated (4 x10³ cells/well in 96-well

microplates) at 37℃ in RPMI 1640 medium (pH 7.2 to 7.4) without phenol red (Gibco

BRL) supplemented with 10% fetal bovine serum and 1% glutamine, as reported
previously [27, 30].

Cytotoxicity assays: To evaluate the toxicity profile and determine the selectivity index (SI), cardiac and L929 cells were incubated at 37°C with crescent concentrations of the studied compounds for 24 and 96 h and cellular viability were evaluated by colorimetric analysis using Prestoblue [27] and Alamarblue [30] assays as reported, respectively. After 5 and 6 h of incubation respectively, the absorbance were measured at 570 and 600 nm according to manufactures instructions and the

779	results confirmed by the analysis of morphology and physiology aspects through light
780	microscopy. The results are expressed as the percent of reduced viability in
781	compound-treated and vehicle-treated samples by following the manufacturer's
782	instructions and the EC_{50} values calculated (concentration that reduces the cellular
783	viability by 50%) [26, 27, 30].

Trypanocidal effects: BT forms of Y strain (5x10⁶/mL) were incubated for 2 and 24 h 784 at 37℃ in absence or presence of crescent concentrations (0 – 50 µM) of each tested 785 compound. The compounds were diluted in RPMI 1640 medium (Roswell Park 786 Memorial Institute - Sigma Aldrich – USA) supplemented with 5% FBS. Subsequently 787 the incubation, death rates were assessed by light microscopy quantification using a 788 Neubauer chamber to determine the EC₅₀ that correspond the compound 789 concentration that reduces in 50% of the number of the parasite population [26,27, 790 31]. For the effect against intracellular forms (Tulahuen- β -galactosidase strain), L929 791 cells were infected for 2h, rinsed using saline to remove non-internalized parasites and 792 then incubated for 48 h at 37℃ to establish the culture infection. The infected L929 793 cell cultures were exposed first to a fixed concentration of tested compounds (10-12 794 μ M). Those that presented \geq 50 % of reductions in the parasite load, were further 795 screened using infected cultures submitted increasing non-toxic concentrations of the 796 selected compounds to determine the EC₅₀ values. Next, the absorbance was 797 measured at 570 nm and results expressed as the percentage of T. cruzi growth 798 inhibition in compound-tested cells compared to untreated cells. In parallel, the 799 therapy using the reference drug (Bz) was always performed as reported [26]. 800

802	Acute toxicity: NOAEL (no-observed-adverse-effect level) was obtained by injecting,
803	via intraperitoneal (ip), increasing concentrations of the tested compound (up to 200
804	mg/kg of mice body weight) in female Swiss Webster mice (weight, 20 to 23 g; n - 2
805	mice per assay for two assays). Treated animals were inspected for toxic and subtoxic
806	symptoms according to the Organization for Economic Cooperation and Development

807	(OECD)	guidelines.	At	48	h	after	compound	injection,	the	NOAEL	values	were
808	determin	ed as report	ed p	orev	iou	isly [3 ⁻	1].					

809	Mice infection and treatment schemes: Male Swiss Webster mice (18 to 20 g)
810	obtained from the animal facilities of Instituto de Ciência e Tecnologia em Biomodelos
811	(ICTB) from Fundação Oswaldo Cruz (FIOCRUZ) were household at a maximum of 6
812	animals per cage, and kept in a specific-pathogen-free (SPF) room at 20 to $24^\circ\!\!C$
813	under a 12- light and 12-h dark cycle, providing sterilized water and chow ad libitum.
814	The animals were acclimated for 7 days before starting the experiments. Infection was
815	performed by i.p. injection of 10^4 bloodstream trypomastigotes (Y strain). Compound 1
816	was first dissolved in DMSO and then freshly diluted with 20% of Trappsol (CTD, Inc.,
817	USA) and Bz was prepared in sterile distilled water with 3% Tween 80 (Sigma-
818	Aldrich). The animals were divided into the following groups: uninfected (noninfected
819	and untreated), untreated (infected with <i>T.cruzi</i> but treated only with vehicle), and
820	treated (infected and treated) i.p. with nontoxic doses of 5 to 20 mg/kg/day test
821	compound or with 100 mg/kg/day Bz p.o. The mouse received a 0.1-ml i.p. dose, the
822	treatment started at 5 th day post infection (dpi) that represent the parasitemia onset in
823	this experimental model and followed for five consecutive days, until 9 th dpi. For Bz
824	treatment, infected mice received a 0.1 mL p.o. following the same therapeutic
825	schemes as described above [19].

826	Parasitemia and mortality rates: Parasitemia was individually detected by Pizzy-
827	Brener [32] methodology using direct light microscopy to quantify the number of
828	parasites in 5 μ L of blood collected from tail vein, and the mice were checked for
829	mortality daily until 30 days post treatment [31]. Mortality was expressed by the
830	percentage of cumulative mortality (CM) as described by Batista and coworkers [22].

831 Ethics

- All procedures were carried out in accordance with the guidelines established by the
- 833 FIOCRUZ Committee of Ethics for the Use of Animals (CEUA LW16/14).

834 **References**

⁸³⁵ [1] World Health Organization (WHO).

http://www.who.int/mediacentre/factsheets/fs340/en/, 2017 (accessed 20 November
 2017).

838

839 [2] JCP. Dias, AN. Ramos Jr, ED. Gontijo, A. Luguetti, MA. Shikanai-Yasuda, JR. 840 Coura, RM. Torres, JR. Melo, EA. Almeida, W Jr. Oliveira, AC. Silveira, JM. Rezende, 841 FS. Pinto, AW. Ferreira, A. Rassi, AA Filho. Fragata, AS. Sousa, D. Correia, AM. 842 Jansen, GM. Andrade, CF. Britto, AY. Pinto, A Jr. Rassi, DE. Campos, F. Abad-843 Franch, SE. Santos, E. Chiari, AM Hasslocher-Moreno, EF. Moreira, DS. Margues, 844 EL. Silva, JA. Marin-Neto, LM. Galvão, SS. Xavier, AS. Valente, NB. Carvalho, AV 845 Cardoso, RA. Silva, VM. Costa, SM. Vivaldini, SM. Oliveira, VD. Valente, MM. Lima, 846 RV. Alves, 2 nd Brazilian Consensus on Chagas Disease, 2015. Rev da Soc Bras 847 Med Trop. 49 (2016) 3-60. 848

- [3] E.Chatelain, Chagas disease research and development: is there light at the end of
 the tunnel? Comput Struct Biotechnol J. 15 (2017) 98-103.
- 852

[4] E. Chatelain, N. Konar, Translational challenges of animal models in Chagas
disease drug development: a review. Drug Des Devel Ther. 9 (2015) 4807-4823.

- 855
- [5] Drugs for Neglected Diseases Initiative (DNDi). <u>https://www.dndi.org/diseases-</u>
 <u>projects/chagas/chagas-disease-background/,</u> 2017 (accessed 20 November 2017).
 [6] MNC. Soeiro, SL. De Castro. Trypanosoma cruzi targets for new chemotherapeutic
- approaches. Expert Opin Ther Targets. 13 (2009)105-121.
- 860
- ⁸⁶¹ [7] SR. Wilkinson, JM. Kelly, Trypanocidal drugs: mechanisms, resistance and new
 ⁸⁶² targets. Expert Rev Mol Med. 11(2009) e31.
- 863
- [8] B. Zingales, MA. Miles, CB. Moraes, A. Luquetti, F. Guhl, AG. Schijman, I. Ribeiro,
 Drug discovery for Chagas disease should consider Trypanosoma cruzi strain
 diversity. Mem Inst Oswaldo Cruz. 109 (2014) 828-833.
- 868
- [9] JA. Urbina, Ergosterol biosynthesis and drug development for Chagas disease. Mem. Inst. Oswaldo Cruz. 104 (2009) 311-318.

870 871	[10] MN. Soeiro, EM. de Souza, CF. da Silva, Batista Dda. G, MM. Batista, BP. Pavão, IS Aravia, CA Aiub PB da Silva, L Lionel C Britto K Kim G Sulikowski
872	TY Hargrove MR Waterman GL Lepesheva In vitro and in vivo studies of the
873	antiparasitic activity of sterol 14g-demethylase inhibitor VNI against drug-resistant
874	strains of <i>T. cruzi</i> . Antimicrob Agents Chemother. 57(2013) 4151-4163.
875	
876	[11] I. Molina, J. Gómez i Prat, F. Salvador, B. Treviño, E. Sulleiro, N. Serre D. Pou, S. Roure, J. Cabezos, L. Valerio, A. Blanco-Grau, A. Sánchez-Montalvá, X. Vidal, A. Pahissa, Randomized trial of posaconazole and benznidazole for chronic Chagas' diagage. N Engl. J. Med. 270 (2014)1800, 1008
877	
878	
879	
880	disease. N Eligi J Med. 370 (2014) 1899-1908.
881	[12] I. Molina, F. Salvador, A. Sánchez-Montalvá, The use of posaconazole against Chagas disease. Curr Opin Infect Dis. 28 (2015) 397-407
882	
883	
884	
885	[13] CA. Morillo, H. Waskin, S. Sosa-Estani, M. Del Carmen Bangher, C. Cuneo, R. Milesi, M. Mallagray, W. Apt, J. Beloscar, J. Gascon, I. Molina, LE. Echeverria, H.
886	
887	Colombo, JA. Perez-Molina, F. Wyss, B. Meeks, LR. Bonilla, P. Gao, B. Wei, M.
888	McCarthy, S. Yusuf, Investigators. STOP-CHAGAS, Benznidazole and Posaconazole
889	J Am Coll Cardiol. 69 (2017) 939-947.
890	
891	
892	[14] JA.Urbina, Pharmacodynamics and Follow-Up Period in the Treatment of Human <i>Trypanosoma cruzi</i> Infections With Posaconazole. J Am Coll Cardiol. 70 (2017) 299-
893	
894	300.
895	
896	[15] GI. Lepesheva, Design or screening of drugs for the treatment of Chagas disease:
897	what shows the most promise? Expert Opin Drug Discov. 8(2013)1479-1489.
898	Y Y
899	[16] GI. Lepesheva, TY. Hargrove, G. Rachakonda, Z. Wawrzak, S. Pomel, S. Cojean,
900	PN. Nde, WD. Nes, CW. Locuson, MW. Calcutt, MR. Waterman, JS. Daniels, PM.
901	Loiseau, F. Villalta, VFV as a new effective CYP51 structure-derived drug candidate
902	for Chagas disease and visceral leishmaniasis. J. Infect. Dis. 212 (2015) 1439-1448.
903	
904	[17] WJ. Hoekstra, TY. Hargrove, Z. Wawrzak, D. da Gama Jaen Batista, CF. da Silva,
905	AS. Nefertiti, G. Rachakonda, RJ. Schotzinger, F. Villalta, Mde N. Soeiro, GI.
906	Lepesheva, Clinical Candidate VI-1161's Antiparasitic Effect In Vitro, Activity in a
907	Murine Model of Chagas Disease, and Structural Characterization in Complex with the
908	rarget Enzyme Crest from rrypanosoma cruzi. Antimicrob Agents Chemother. 60
909	(2010) 1058-1066.
910	
911	[18] TY. Hargrove, K. Kim, M. de Nazaré Correia Soeiro, CF. da Silva, DD. Batista,
912	MM. Batista, EM. Yazlovitskaya, MR. Waterman, GA. Sulikowski, GI. Lepesheva,
	LIVEST STUCTURES and STUCTURE-DASED DEVELOPMENT OF DOVEL DATAODED-SDECITIC

CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds. Int J Parasitol Drugs Drug Resist. 2 (2012) 178-186.
[19] FH. Guedes-da-Silva, DG. Batista, CF. da Silva, MB. Meuser, MR. Simões-Silva,
JS. de Araújo, CG. Ferreira, OC. Moreira, C. Britto, GI. Lepesheva, Mde N. Soeiro,
Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different
Genders in Mouse Experimental Models of *Trypanosoma cruzi* Infection. Antimicrob
Agents Chemother. 59 (2015) 7564-7570.

- [20] FH. Guedes-da-Silva, DGJ. Batista, CF. Da Silva, JS. De Araujo, BP. Pavao, MR.
 Simoes-Silva, MM. Batista, KC. Demarque, OC. Moreira, C. Britto, GI. Lepesheva,
 MNC. Soeiro, Antitrypanosomal activity of sterol 14α- demethylase (CYP51) inhibitors
 VNI and VFV in the Swiss mouse models of Chagas disease induced by the
 Trypanosoma cruzi Y strain. Antimicrob Agents Chemother. 61(2017) e02098-16.
- [21] J. Riley, S. Brand, M. Voice, I. Caballero, D. Calvo, KD.Read, Development of a
 Fluorescence-based *Trypanosoma cruzi* CYP51 Inhibition Assay for Effective
 Compound Triaging in Drug Discovery Programmes for Chagas Disease. PLoS Negl
 Trop Dis. 9 (2015) e0004014.
- 931

913

[22] DG. Batista, MM. Batista, GM. Oliveira, PB. Amaral, J. Lannes-Vieira, CC. Brito,
A.Junqueira, MM. Junqueira, AJ. Romanha, PA. Sales Junior, CE. Stephens, DW.
Boykin, MN. Soeiro, Arylimidamide DB766, a potential chemotherapeutic candidate for
Chagas' disease treatment. <u>Antimicrob Agents Chemother.</u> 54 (2010) 2940-2.

- 936 [23] SYBYL Molecular Diversity Selector, Version 7.3; Tripos, Inc.: St.Louis, MO, 2006
- ⁹³⁷ [24] Schrödinger Release 2017-2: Maestro, Schrödinger, LLC, New York, NY, 2017.
- 938

[25] M. De Rycker, J. Thomas, J. Riley, SJ. Brough, TJ. Miles, DW. Gray, Identification
 of Trypanocidal Activity for Known Clinical Compounds Using a New Trypanosoma
 cruzi Hit-Discovery Screening Cascade. PLoS Negl Trop Dis. 10 (2016) e0004584.

[26] BL. Timm, PB. da Silva, MM. Batista, CF. da Silva, RR. Tidwell, DA. Patrick, SK
Jones, SA. Bakunov, SM. Bakunova, Mde N. Soeiro, *In vitro* and *In vivo* Biological
Effect of Novel Arylimidamide Derivatives Against *Trypanosoma cruzi*. Antimicrob
Agents Chemother. 58 (2014) 3720-372.

947 948

[27] FH. Guedes-da-Silva, DGJ. Batista, MB. Meuser, KC. Demarque, TO. Fulco, JS.
 Araújo, PB. Da Silva, CF. Da Silva, DA. Patrick, SM. Bakunova, AS. Bakunov, RR.
 Tidwell, GM. Oliveira, C. Britto, OC. Moreira, MNC. Soeiro, In vitro and in vivo
 trypanosomicidal action of novel arylimidamides against Trypanosoma cruzi.
 Antimicrob Agents Chemother. 60 (2016) 2425-2434.

ACCEPTED MANUSCRIPT

⁹⁵³ [28] FS. Buckner, CL. Verlinde, AC. La Flamme, WC, Van Voorhis, Efficient Technique
 ⁹⁵⁴ for Screening Drugs for Activity against *Trypanosoma cruzi* Using Parasites
 ⁹⁵⁵ Expressing β-Galactosidase. <u>Antimicrob Agents Chemother</u>. 40 (1996) 2592-2597.

[29] MNL. Meirelles, TC. Araujo-Jorge, CF. Miranda, W. de Souza, HS. Barbosa,
 Interaction of *Trypanosoma cruzi* with heart muscle cells: ultrastructural and
 cytochemical analysis of endocytic vacuole formation and effect upon myogenesis *in vitro*. Eur J Cell Biol. 41(1986) 198-206.

962

[30] AJ. Romanha, SL. De Castro, MNC. Soeiro, J. Lannes-Vieira, I. Ribeiro, A.
Talvani; B. Bourdin, B. Blum, B. Olivieri, C. Zani, C. Spadafora, E. Chiari, E. Chatelain,
G. Chaves, JE. Calzada, JM. Bustamante, LH. Freitas-Junior, LI. Romero, MT. Bahia,
M. Lotrowska, M. Soares, SG. Andrade, T. Armstrong, W. Degrave, ZA. Andrade, *In vitro* and *in vivo* experimental models for drug screening and development for Chagas
disease. Mem Inst Oswaldo Cruz. 105 (2010) 233-238.

969

[31] CF. Da Silva, DGJ. Batista, GM. Oliveira, EM. de Souza, ER. Hammer, PB. da
Silva, A. Daliry, JS. Araujo, C. Britto, AC. Rodrigues, Z. Liu, AA. Farahat, A. Kumar,
DW. Boykin, MNC. Soeiro, *In vitro* and *in vivo* investigation of the efficacy of
arylimidamide DB1831 and its mesylated salt form—DB1965—against *Trypanosoma cruzi* infection. PLoS One. 7(2012) e30356.

975

[32] Z. Brener, Therapeutic activity and criterion of cure on mice experimentally
infected with *Trypanosoma cruzi*. Rev. Inst Med. trop. S. Paulo. 4 (1962) 389-396.

978 979

980