Performance-guided Neural Network for Self-Organising Network Management

Lee, Sin Wee and Palmer-Brown, Dominic and Tepper, Jonathan and Roadknight, Christopher (2002) ‘Performance-guided Neural Network for Self-Organising Network Management’, Proceedings of London Communication Symposium (LCS'2002) University College London, London, UK, 9th – 10th September, pp. 269 - 272.

[img]
Preview
Text
Lee, S.W. (2002) LCS 269-72.pdf - Accepted Version
Available under License Creative Commons Attribution No Derivatives.

Download (43Kb) | Preview
Official URL: http://www.ee.ucl.ac.uk/lcs/previous/LCS2002/LCS04...

Abstract

A neural network architecture is introduced for real-time learning of input sequences using external performance feedback. Some aspects of Adaptive Resonance Theory (ART) networks [1] are applied because they are able to function in a fast real-time adaptive active network environment where user requests and new proxylets (services) are constantly being introduced over time [2,3]. The architecture learns, self-organis es and self-stabilises in response to user requests, mapping the requests according to the types of proxylets available. However, in order make the neural networks respond to performance feedback, we introduce a modification to the original ART1 network in the form of the ‘snap-drift’ algorithm, that uses fast convergent, minimalist learning (snap) when the overall network performance is poor, and slow learning (drift towards user request input pattern) when the performance is good. Preliminary simulations evaluate the two-tiered architecture using a simple operating environment consisting of simulated training and test data.

Item Type: Conference or Event Item (Paper)
Additional Information: Citation: Lee, S. W. et al. (2002) “Performance-guided Neural Network for Self-Organising Network Management.” In Proceedings of London Communication Symposium (LCS'2002) University College London, London, UK, 9th – 10th September, pp. 269 - 272..
Divisions: Schools > Architecture Computing and Engineering, School of
Depositing User: Mr Stephen Grace
Date Deposited: 29 Apr 2010 10:25
Last Modified: 27 Sep 2012 11:59
URI: http://hdl.handle.net/10552/768

Actions (login required)

View Item View Item